首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Summary Large natural African lakes contain unique and diverse fish faunas which have evolved within each lake in a comparatively short period of time. members of the family Cichlidae are particularly diverse, although there is strong evidence to show that the haplochromines in Lake Victoria, and possibly Lake Malawi, are monophyletic. The unique faunas in Lakes Victoria and Kyoga have been subject to perturbations from the introduction of exotic fish, and the faunas in these and other lakes have been disturbed by fishing activities and other human endeavours.Factors governing the establishment of exotic species are not clearly understood. The exotic fish must be physiologically adapted to their new environment, able to compete successfully both for habitat and for food at each stage of their life history, able to avoid predation and must have a suitable reproductive potential. Although about 50 species of fish have been introduced into African inland waters, including reservoirs, only comparatively few, in particular Nile perch (Lates niloticus), various cichlids (especially tilapias) and clupeids (Limnothrissa miodon), have been successful in establishing themselves. Those that have become established have had obvious but unquantifiable impacts on the indigenous faunas.It is difficult to differentiate between the effects of fishing and of the presence of alien fish on the fish species composition of the lakes (Witte et al., 1992). Many of the lakes were overfished before introductions were made, with a resultant decline in some species, especially the larger ones, and the virtual disappearance of others. Some lake fish faunas, such as those of Lakes Kyoga and Victoria, which have been subjected to the perturbations described above, continue to change rapidly (Ogutu-Owayo, 1990b).There is a fundamental need to collect biological information on the fish communities of African lakes for effective management, resulting not only in the conservation of unique fish faunas but also the production of sustainable fish yields for the people relying on this source of protein. This information is required before any more introductions of exotic fish are made.  相似文献   

2.
Synopsis The African Great Lakes are considered to be dynamically fragile ecosystems that are relatively resistant to minor changes with which they have co-evolved but vulnerable to major perturbations such as overfishing, the introduction of alien species and pollution. These lakes are inhabited by large species flocks of cichlid fishes which are characterised by a complex structure of interaction both between and within species, as is typical of mature ecosystems. Major perturbations, such as the disruption of trophic interactions through the introduction of alien fishes, may reverse the domination of relatively precocial, specialised forms and result in the creation of conditions that are conducive to the survival of more altricial, generalised forms with strong colonising abilities. The introduction of Nile perch and Nile tilapia, as well as other alien fishes, into Lake Victoria, combined with overfishing for the indigenous cichlid species, has resulted in marked changes to the fish communities and the fisheries that depend on them. The most important impacts of the Nile perch appear to be predation and aggressive effects whereas those of the tilapias include hybridization, overcrowding, competition for food and possibly the introduction of parasites and diseases. While the three proposed methods of conserving the indigenous flocks of cichlid fishes (captive propagation, reducing Nile perch stocks and closure of the haplochromine trawl fishery) all have merit, the changes that are occurring in Lake Victoria are basically irreversible. The highest priority should be to assist the governments of the riparian countries (Tanzania, Uganda and Kenya) with monitoring and research programmes and to support their policies of non-introduction of further alien fishes into any of the African Great Lakes so as prevent the same cycle of events from occurring, for example, in Lakes Tanganyika and Malawi. The diverse animal and plant communities of the African Great Lakes are a heritage of all mankind and it is the duty of every country to play a role in their conservation. It is therefore proposed that an internationally funded research programme should be mounted on the African Great Lakes on the scale of the tropical forest biome project of the IUCN. Editorial  相似文献   

3.
Synopsis Ecological conditions in tropical lacustrine systems are considered by focusing on the evolution, maintenance, exploitation and vulnerability of fish communities in the African Great Lakes. The exceptionally high biodiversities in the littoral/sublittoral zones of the very ancient, deep, clear, permanently stratified rift lakes Tanganyika and Malawi, are contrasted with the simpler systems in their pelagic zones, also with biodiversity in the much younger, shallower Victoria, the world's largest tropical lake.Paper from the Canadian Society of Zoologists symposium Great Lakes of the World, organized by David L.G. Noakes  相似文献   

4.
The lakes formed by large power dams are populated by basically riverine faunas. The African Great Lakes are populated by highly specialized endemic faunas containing the bulk of the world's lacustrine fish species. Examples from the fauna of Lake Malawi are considered to illustrate the utilization of various niches, and it is suggested that such specialized species should be introduced into large tropical impoundments to utilize niches probably not fully occupied at present. Such introductions would pose little threat to the ecosystem of the rest of the river system into which they are introduced because of their close specialization to lacustrine conditions.  相似文献   

5.
Geoffrey Fryer 《Hydrobiologia》1991,211(2):137-146
Lakes Baikal, Tanganyika and Malawi have similar origins, are physiographically similar, and of similar size. The hydrological regime of Baikal is, however, very different from that which prevails in its African sisters. Apart from being much cooler, it differs fundamentally in being oxygenated to all depths while the two great African rift lakes possess only a relatively thin oxygenated surface layer and have vast oxygenless, and therefore azoic, abyssal regions. Nevertheless, like Baikal, they have rich endemic faunas.That these faunas originated largely by intralacustrine speciation and not by multiple invasion is now well established. They provide some of the world's most spectacular examples of species flocks, and some groups display what has been aptly described as explosive speciation. Certain features, and especially the adaptive radiation, of some of the groups involved, are noted. Comparisons between lakes are illuminating. Some species flocks, such as those of amphipods, sponges and turbellarians of Baikal and the atyid prawns and potamid crabs of Tanganyika, have no counterparts in the other lakes. Other groups, such as the prosobranch gastropods, ostracods and harpacticoid copepods of Baikal and Tanganyika, and the fishes of all three, involve representatives of the same major group, though often of different families or even higher taxonomic categories.That allopatric speciation has been involved is universally acknowledged but the problems posed by species multiplication in deep water in L. Baikal have led to suggestions that sympatric speciation could have played a part. Notwithstanding the difficulties, it is suggested that the process can be explained without invoking the assistance of the sympatric model.The faunas of these lakes provide immense fields for investigation and enormous intellectual challenges. While each is an entity in itself, comparative studies may be particularly enlightening.The substance of this paper was presented as a lecture at the First International Baikal Vereshchagin Conference held in Listvyanka, Irkutsk Region, U.S.S.R. in October 1989.  相似文献   

6.
SUMMARY

The African Great Lakes differ from shallower large African lakes by undergoing seasonal stratification and from large reservoirs in having long residence times, so that the ionic concentration of the lake water differs substantially from that of the inflows.

The African Great Lakes are so large that limnological events are usually local, causing regional differences. They can he regarded as models for oceanic systems, with local processes playing a major part in nutrient cycling, Production, on an area basis, may be high because of the considerable depth of the euphotic zones of many of the lakes, but the production cycle is poorly understood because of temporal and spatial limitations of sampling. Cyclonic upwelling may play an important part in offshore nutrient cycling.

Links between limnology and fisheries are becoming apparent. Catches of Oreochromis in Lake Malawi are correlated with falling lake levels three years previously, which is explained in climatological terms. Different transfer efficiencies between plankton and fish production may reflect differences in the depth of the euphotic zone. The history and seasonal changes in deep stratification appears to have had a large influences in the evolution of demersal fish faunas.

The lakes are so large and so complex that their complete investigation is beyond the resources of any single Government. There is a need for independently funded fundamental research to complement the applied research which must be the first priority of local Governments.  相似文献   

7.
Synopsis The continent of Africa has a wide variety of inland waters ranging from rift valley lakes to endorheic and coastal lakes, floodplains and rivers. This paper makes a preliminary comparison of the number of species in different eco-ethological sections of the reproductive guild categories of non-guarders, guarders and bearers in ancient African Great Lakes (Malawi, Victoria and Tanganyika), fluctuating endorheic lakes (Ngami, Chad and Chilwa), typical rivers (Orange-Vaal, Limpopo, Phongolo, Sabi-Lundi, Middle and Lower Zambezi, Kafue, Cunene, Okavango, Niger, Luongo, Lower Zaire) and wetlands (Okavango Delta and Kafue floodplain). The results indicate that the highest percentage of bearers and guarders is found in the ancient African Great Lakes, which are characterised by relatively predictable physico-chemical regimes, whereas a higher percentage of non-guarders is found in the rivers and wetlands, which have less predictable physico-chemical regimes. The management implications of this observation are discussed, and the usefulness of the species as a unit in ecology is assessed.  相似文献   

8.
1. Ancient, deep lakes have traditionally been considered as stable, ecological islands, well buffered from environmental change because of their great depth. However, they are not immune to anthropogenic and climatic stress. Ecosystems of the permanently stratified warm Lakes Malawi and Tanganyika in the Great East African Rift are particularly delicate. Their stratification regime has historically limited the distribution of benthic biota to a ‘bathtub ring of biodiversity’, namely substrata in the upper, oxygenated water layer. 2. We use historical data on the endemic deep‐water molluscs of these lakes to assess present‐day stress on their benthic ecosystems. During the 20th century, these molluscs have probably decreased in abundance and migrated to shallower water. 3. These apparent trends have a significance beyond species‐based conservation, foremost because deep‐water organisms heavily rely on the position and temporal stability of the oxycline and therefore provide an early warning of large‐scale changes in the distribution of dissolved oxygen. Oxygen demands have increased in the East African Great Lakes over the last century whereas ventilation of deep water has remained the same or declined. 4. The combination of these factors is resulting in a narrowing of the ring of biodiversity and a changed nutrient flux through this ring. Reduction in the habitat available inevitably puts biota at risk, whereas changes in nutrient flux may cause shifts in the entire ecosystem or the collapse of parts of it. 5. Considering the socioeconomic value of these lakes and the potentially grave implications for their faunal biodiversity and entire ecosystems, existing evidence of faunal decline, especially in taxa that depend strongly on the stratification regime, is of great concern. Moreover, because the factors responsible are widespread and include surface‐water warming, increased run‐off and eutrophication, respiration stress may also develop in other tropical and subtropical lakes.  相似文献   

9.
Water level fluctuations are important modulators of speciation processes in tropical lakes, in that they temporarily form or break down barriers to gene flow among adjacent populations and/or incipient species. Time estimates of the most recent major lowstands of the three African Great Lakes are thus crucial to infer the relative timescales of explosive speciation events in cichlid species flocks. Our approach combines geological evidence with genetic divergence data of cichlid fishes from the three Great East African Lakes derived from the fastest-evolving mtDNA segment. Thereby, we show for each of the three lakes that individuals sampled from several populations which are currently isolated by long geographic distances and/or deep water form clusters of equally closely related haplotypes. The distribution of identical or equally closely related haplotypes in a lake basin allows delineation of the extent of lake level fluctuations. Our data suggest that the same climatic phenomenon synchronized the onset of genetic divergence of lineages in all three species flocks, such that their most recent evolutionary history seems to be linked to the same external modulators of adaptive radiation. A calibration of the molecular clock of the control region was elaborated by gauging the age of the Lake Malawi species flock through the divergence among the utaka-cichlid and the mbuna-cichlid lineages to minimally 570,000 years and maximally 1 Myr. This suggests that the low-lake-level period which established the observed patterns of genetic relatedness dates back less than 57,000 years, probably even to 17,000-12,400 years ago, when Lake Victoria dried up and Lakes Malawi and Tanganyika were also low. A rapid rise of all three lakes about 11,000 years ago established the large-scale population subdivisions observed today. Over that period of time, a multitude of species originated in Lakes Malawi and Victoria with an impressive degree of morphological and ecological differentiation, whereas the Tanganyikan taxa that were exposed to the same habitat changes hardly diverged ecologically and morphologically. Our findings also show that patterns of genetic divergences of stenotopic organisms provide valuable feedback on geological and sedimentological time estimates for lake level changes.  相似文献   

10.
The three largest water bodies of East Africa, Lake Victoria, Tanganyika, and Malawi contain an estimated number of 2,000 endemic cichlid fish species, in addition, to a mostly uncounted wealth of invertebrates. While the terrestrial diversity is reasonably well protected, as economic and touristic interests coincide with biological conservation strategies, this is not the case for most African lakes and rivers. Nonetheless, it must be promoted that these aquatic ecosystems also deserve protection. Conservation strategies for aquatic biota have so far been the same as for terrestrial environments, i.e., by declaring biodiversity hotspots national parks. Such parks also contain rivers and lake shores. Here, I argue that it seems questionable that this strategy will work, given strong micro-geographic structure of the species flocks and the great degree of local endemism. I suggest a novel strategy for protecting African Lake communities that accounts for local endemism, derived from recent molecular phylogenetic and phylogeographic studies on East African cichlid fishes. While connectivity is the major problem for terrestrial and marine national parks, to ensure a large enough effective population size of the protected animals, this is not the case in most taxa of African rivers and lakes, where local endemism prevails. For example, most littoral cichlid species are subdivided into numerous distinct “color morphs” with restricted distribution, and unlike marine fishes with planktonic larvae display brood care with small offspring numbers. It is argued that the establishment of “micro-scale protected areas,” a large number of small stretches of strictly protected coast line, each only some hundreds of meters long, is likely to work best to preserve the littoral communities in African lakes. Such protected zones can sustain a reasonably effective population size of littoral species, serve as protected spawning ground or nursery area for pelagic species, and at the same time re-seed neighboring populations that are exploited continuously. As long-term stability of littoral fishing grounds is in the immediate interest of village communities, such small protected areas should be managed and controlled by the local communities themselves, and supervised by governmental institutions.  相似文献   

11.
The great lakes of Africa contain one of the most remarkable known examples of rapid evolution and speciation of a vertebrate group. The three major lakes - Lake Victoria, Lake Malawi and Lake Tanganyika - each contain a unique radiation of fish belonging to the family Cichlidae. This has produced species 'flocks' that are unique to each lake in species numbers and diversity. At present most of the cichlid species in Lake Victoria are facing extinction as a result of the introduction of an exotic fish species. There are many other examples of introductions or invasions of non-native fish that have had severe effects on the native fish populations and regional economics. These examples should provide a clear warning against the proposed introductions of exotic fish into Lake Malawi.  相似文献   

12.
Lake Tanganyika, the oldest of the East African Great Lakes, harbors the ecologically, morphologically, and behaviorally most complex of all assemblages of cichlid fishes, consisting of about 200 described species. The evolutionary old age of the cichlid assemblage, its extreme degree of morphological differentiation, the lack of species with intermediate morphologies, and the rapidity of lineage formation have made evolutionary reconstruction difficult. The number and origin of seeding lineages, particularly the possible contribution of riverine haplochromine cichlids to endemic lacustrine lineages, remains unclear. Our phylogenetic analyses, based on mitochondrial DNA sequences of three gene segments of 49 species (25% of all described species, up to 2,400 bp each), yield robust phylogenies that provide new insights into the Lake Tanganyika adaptive radiation as well as into the origin of the Central- and East-African haplochromine faunas. Our data suggest that eight ancient African lineages may have seeded the Tanganyikan cichlid radiation. One of these seeding lineages, probably comprising substrate spawning Lamprologus-like species, diversified into six lineages that evolved mouthbrooding during the initial stage of the radiation. All analyzed haplochromines from surrounding rivers and lakes seem to have evolved within the radiating Tanganyikan lineages. Thus, our findings contradict the current hypothesis that ancestral riverine haplochromines colonized Lake Tanganyika to give rise to at least part of its spectacular endemic cichlid species assemblage. Instead, the early phases of the Tanganyikan radiation affected Central and East African rivers and lakes. The haplochromines may have evolved in the Tanganyikan basin before the lake became a hydrologically and ecologically closed system and then secondarily colonized surrounding rivers. Apparently, therefore, the current diversity of Central and East African haplochromines represents a relatively young and polyphyletic fauna that evolved from or in parallel to lineages now endemic to Lake Tanganyika.  相似文献   

13.
Human impacts on the African Great Lakes   总被引:8,自引:0,他引:8  
The African Great Lakes are important sources of fishes and water for domestic use, are used as avenues of transport, and receive agricultural, domestic and industrial effluents and atmospheric residues. Some of these lakes have speciose fish faunas of great interest to science. The catchment areas of some of the lakes are highly populated and user conflicts have increased the demands on the lakes' resources. There have been drastic reductions in fish stocks in most of the lakes due to overfishing. Introductions of new fish species, though followed by increases in fish catches, have been accompanied by a decline and in some cases extinction of native fish species. Some of the lakes have been invaded by the water hyacinth, Eichhornia crassipes. Agricultural activities, deforestation and devegetation of the catchment areas have increased siltation, and led to loss of suitable habitats and biodiversity. There are increased nutrient inputs from agriculture, sewage and industrial discharges and combustion processes which can cause eutrophication. There are also increased threats of toxic pollution from industrial waste discharge, mining, pesticides, and oil residues and spills. Climatic changes may also affect thermal stability of the lakes. These factors threaten availability of dietary protein, clean water and biodiversity. National and international efforts are required to manage the fisheries, guide the introduction of exotics, conserve biodiversity, control the water hyacinth, control eutrophication, reduce input of contaminants and manage climate change.  相似文献   

14.
Chaoborus, the phantom midge (Insecta, Diptera, Chaoboridae), has a widespread distribution, commonly occurring in lakes and ponds all over the world. In the great lakes region of East Africa Chaoborus is present in Lakes Victoria, Albert, Edward, Malawi and George, but absent from Lakes Tanganyika, Kivu and Turkana. Tropical lakes typically have water temperatures in the range of 22–26 °C year round. Lakes Tanganyika and Kivu have only 20% of their bottom sediments oxygenated during full circulation, contrary to 95–100% in all of the other lakes, excluding Lake Malawi (45%) (Hecky & Kling, 1987). Planktivorous fish are present in all lakes (Lehman, 1995). We hypothesized that the absence of Chaoborus larvae from some lakes of East Africa may be the result of interaction among high temperatures, low oxygen levels, and fish predation.We developed a model to estimate energetic costs for Chaoborus larvae at temperatures greater than 14 °C. We hoped to shed light on the bioenergetics of Chaoborus populations, and the possibility that extant distributions of Chaoborus larvae are the result of energetic constraints.We found that relative respiratory and growth costs of Chaoborus larvae are highest in the early stages of development. We estimated that non-feeding instar I larvae living in 25 °C water will starve to death in less than one day. It is possible that Chaoborus populations are prevented from establishing in certain areas because high energetic costs condemn young larvae to death by either predation or starvation.  相似文献   

15.
Aim Current estimates of species richness within rapidly evolving species flocks are often highly dependent on the species status of allopatric populations that differ in phenotypic traits. These traits may be unreliable indicators of biological species status and systematists may have inconsistently assigned species among lineages or locations on the basis of these traits, thus hampering comparative studies of regional species richness and speciation rates. Our aim was to develop a method of generating standardized estimates of regional species richness suitable for comparative analysis, and to use these estimates to examine the extent and consistency of species assignment of allopatric populations within rapidly evolving cichlid fish flocks present in three east African lakes. Location Lakes Malawi, Victoria and Tanganyika. Methods Using published taxon co-occurrence data, a novel approach was employed to calculate standardized ‘minimum’ estimates of regional species richness for hard substrate associated complexes of cichlids within each of the lakes. Minimum estimates were based on an explicit assumption that if taxa present on equivalent habitats have disjunct distributions, then they are allopatric forms of the same species. These estimates were compared with current observed ‘high-end’ regional species richness estimates for those complexes to determine the consistency of species assignment of allopatric populations between lineages within a lake. A ‘sympatry’ index was developed to enable comparisons of levels of species assignment of allopatric populations between-lakes to be made. Results Within each lake, the minimum and high-end estimates for species richness were significantly correlated across complexes, indicating that the complexes that contain more recognized species contain the most genuine biological species. However, comparisons of complexes among lakes revealed considerable differences. For equivalent geographical areas, substantially higher proportions of recognized species were totally allopatric within the studied Lake Malawi and Lake Victoria complexes, than those of Lake Tanganyika. Main Conclusions Among African lakes, levels of assignment to species status of allopatric populations were found to be distinctly different. It is unclear whether the discrepancies are a consequence of differences between the lake faunas in degrees of phenotypic divergence among allopatric populations, or are simply the result of inconsistent taxonomic practices. In either case, these results have considerable wider relevance for they emphasize that quantitative measures of regional and beta diversity are critically dependent on the species status of allopatric populations, an issue usually neglected in comparative studies of species richness. The technique introduced here can be used to standardize measures of regional diversity of lineages for comparative analyses, potentially enabling more accurate identification of processes influencing rates of speciation.  相似文献   

16.
The fish faunas of the four Mhlathuze coastal lakes and the lower river comprise a diverse assortment of over fifty marine, estuarine and freshwater species. Three freshwater species are endemic to KwaZulu-Natal and nine estuarine species are endemic to southern Africa. Five species are of conservation significance. Species numbers in Lakes Mzingazi and Cubhu are similar historically and both lakes served as secondary nursery habitats for estuarine associated fishes. This role has been impacted by the construction of weirs at their outlets which prevent successful recruitment of estuarine species, especially during drought years when lake water levels are low. The fish faunas of Lakes Nsezi and Mangeza are depauperate and lack marine or estuarine components. In order that these systems fulfil their potential function as secondary nursery habitats to many estuarine fish species, minimum lake water levels must be set to ensure sufficient outflows at proposed fish ladders during critical spawning and migration times.  相似文献   

17.
The present-day faunas of the great African lakes present some of the world's best examples of 'explosive speciation'. Lakes Victoria and Malawi each probably have several hundred endemic species of cichlid fishes. Much can be inferred about the evolution of these fishes from morphology, behaviour and intra-lacustrine distribution and from the fact that they include taxa ranging from local races, through sibling species, to forms that display extensive differentiation. The time taken to acquire specific distinctness can sometimes be accurately defined, but fossil lineages are unknown. A recent study of a fossil sequence of molluscs in the Turkana basin throws new light on the history of African lake faunas. It also claims to have resolved events during speciation. While critical analysis based on our knowledge of living molluscs in this area fails to substantiate this claim, the fossil molluscs complement information provided by the biology of extant fishes and invertebrates and emphasize the importance of these lakes in the study of evolution in living and extinct populations.  相似文献   

18.
Synopsis Man has been associated with a variety of lakes throughout his evolutionary history in Africa. Lakeside dwellers have a close association with and understanding of these lakes. In the past four decades, however, overexploitation, introductions of alien fishes and the possibility of oil pollution present frightening prospects of irreversible losses and massive extinction. The development of scientific understanding of the life support processes, the ecosystems and the rich communities of these lakes has been so outpaced by exploitation and manipulations that accurate predictions regarding the future are impossible. Shallow lakes are more sensitive to physico-chemical changes caused by climatic as well as agricultural and industrial development than deep lakes, but their biotae are endowed with a resilience which facilitates recovery from major depletions to population size. In contrast, the speciose endemic cichlid faunae of deep lakes are sensitive to fishing pressure, are awkward to manage and should be regarded as representing a much smaller resource than initially imagined. The clupeids of Lake Tanganyika can sustain intensive fishing, but their introduction into other natural lakes is not recommended. Enormous changes to native faunae followed the introduction of Lates niloticus to lakes Kyoga and Victoria with dramatic consequences for the fisheries, for the socio-economic status of the region and for the maintenance of biotic diversity. Extinction of almost 300 fish species is a possible further consequence of L. niloticus predation. Intensive selective fishing for L. niloticus is being initiated, but is unlikely to resolve the problem. In the time necessary to substantially reduce L. niloticus, numerous endemic fishes may suffer extinction. A viable alternative to extinction of these species is captive propagation. Conservation of fishes by captive propagation is not a common or well documented practice. To encourage the acceptance of this conservation option a theoretical scenario in which the concepts and protocols are applied to the fishes of Lake Victoria is given. The possibility of returning rescued populations to the lake at a later date, assuming L. niloticus populations have been reduced, is also discussed. It is recommended that captive propagation should be practised to conserve species and to retain the option of returning rescued taxa. Scientists are urged to seek the funding to study tropical ecosystems so that conservation and rational development may acquire a sound foundation.  相似文献   

19.
The Haplochromini are by far the most species-rich cichlid fish tribe that originated along with the so-called primary radiation of the Lake Tanganyika cichlid species flock, i.e. at the same time during which the majority of the endemic Lake Tanganyika cichlid tribes emerged. Unlike the other tribes, the haplochromines are not restricted to Lake Tanganyika but distributed throughout Africa, except for the northwestern part of the continent. Haplochromine cichlids seeded the adaptive radiation of cichlid fishes in Lakes Malawi, Kivu, Victoria, Turkana, as well as in the now extinct paleo-Lake Makgadikgadi. Here we present a comprehensive phylogenetic and phylogeographic analysis of haplochromine cichlids that is based upon DNA sequences of two mitochondrial gene segments of riverine taxa covering all major African biogeographic regions where haplochromines are found. Our analysis revealed that six lineages of haplochromines originated within a short period of time, about 5.3-4.4 MYA. These haplochromine lineages show a highly complex phylogeographic pattern, probably severely influenced by climate- and/or geology-induced changes of the environment, with river capture events most likely playing an important role for species dispersal.  相似文献   

20.
Lake Tanganyika, Africa's oldest lake, harbours an impressive diversity of cichlid fishes. Although diversification in its radiating groups is thought to have been initially rapid, cichlids from Lake Tanganyika show little evidence for ongoing speciation. In contrast, examples of recent divergence among sympatric colour morphs are well known in haplochromine cichlids from Lakes Malawi and Victoria. Here, we report genetic evidence for recent divergence between two sympatric Tanganyikan cichlid colour morphs. These Petrochromis morphs share mitochondrial haplotypes, yet microsatellite loci reveal that their sympatric populations form distinct genetic groups. Nuclear divergence between the two morphs is equivalent to that which arises geographically within one of the morphs over short distances and is substantially smaller than that among other sympatric species in this genus. These patterns suggest that these morphs diverged only recently, yet that barriers to gene flow exist which prevent extensive admixture despite their sympatric distribution. The morphs studied here provide an unusual example of active diversification in Lake Tanganyika's generally ancient cichlid fauna and enable comparisons of speciation processes between Lake Tanganyika and other African lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号