首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell and developmental biology of alkaloid biosynthesis   总被引:12,自引:0,他引:12  
Plants produce unique natural products as a result of gene mutation and subsequent adaptation of metabolic pathways to create new secondary metabolites. However, their biosynthesis and accumulation remains remarkably under the control of the biotic and abiotic environments. Alkaloid biosynthesis, which requires the adaptation of cellular activities to perform specialized metabolism without compromising general homeostasis, is accomplished by restricting product biosynthesis and accumulation to particular cells and to defined times of plant development. The cell and developmental biology of alkaloid biosynthesis, which is remarkably complex, evolved in part by recruiting pre-existing enzymes to perform new functions.  相似文献   

2.
Citrate metabolism in lactic acid bacteria   总被引:20,自引:0,他引:20  
Abstract: Citrate metabolism plays an important role in many food fermentations involving lactic acid bacteria. Since citrate is a highly oxidized substrate, no reducing equivalents are produced during its degradation, resulting in the formation of metabolic end products other than lactic acid. Some of these end products, such as diacetyl and acetaldehyde, have very distinct aroma properties and contribute significantly to the quality of the fermented foods. In this review the metabolic pathways involved in product formation from citrate are described, the bioenergetic consequences of this metabolism for the lactic acid bacteria are discussed and detailed information on some key enzymes in the citrate metabolism is presented. The combined knowledge is used for devising strategies to avoid, control or improve product formation from citrate.  相似文献   

3.
The insect stage of Trypanosoma brucei adapted the activities of 16 metabolic enzymes to growth rate and carbon source. Cells were grown in chemostats with glucose, rate limiting or in excess, or high concentrations of proline as carbon and energy sources. At each steady state, samples were collected for measurements of substrate and end product concentrations, cellular parameters, and enzyme activities. Correlation coefficients were calculated for all parameters and used to analyze the data set. Rates of substrate consumption and end product formation increased with increasing growth rate. Acetate and succinate were the major nonvolatile end products, but measurable quantities of alanine were also produced. More acetate than succinate was formed during growth on glucose, but growth on proline yielded an equimolar ratio. Growth rate barely affected the relative amounts of end products formed. The end products accounted for the glucose consumed during glucose-limited growth and growth at high rates on excess glucose. A discrepancy, indicating production of CO2, occurred during slow growth on excess glucose and, even more pronounced, in cells growing on proline. The activities of the metabolic enzymes varied by factors of 2 to 40. There was no single enzyme that correlated with consumption of substrate and/or end product formation in all cases. A group of enzymes whose activities rigorously covaried could also not be identified. These findings indicate that T. brucei adapted the activities of each of the metabolic enzymes studied separately. The results of this complex manner of adaptation were more or less constant ratios of the end products and a very efficient energy metabolism.  相似文献   

4.
Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate‐limiting enzymes and negative feedback inhibition by end‐products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)‐norcoclaurine‐6‐O‐methyltransferase (6OMT), a key rate‐limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end‐products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S‐adenosyl‐l ‐homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time‐dependent sensitivity toward sanguinarine.  相似文献   

5.
《Biotechnology advances》2019,37(6):107379
Production of chemicals in microorganisms is no longer restricted to products arising from native metabolic potential. In this review, we highlight the evolution of metabolic engineering studies, from the production of natural chemicals fermented from biomass hydrolysates, to the engineering of microorganisms for the production of non-natural chemicals. Advances in synthetic biology are accelerating the successful development of microbial cell factories to directly produce value-added chemicals. Here we outline the emergence of novel computational tools for the creation of synthetic pathways, for designing artificial enzymes for non-natural reactions and for re-wiring host metabolism to increase the metabolic flux to products. We also highlight exciting opportunities for applying directed evolution of enzymes, dynamic control of growth and production, growth-coupling strategies as well as decoupled strategies based on orthogonal pathways in the context of non-natural chemicals.  相似文献   

6.
Chalcone O-methyltransferase (ChOMT) and isoflavone O-methyltransferase (IOMT) are S-adenosyl-l-methionine (SAM) dependent plant natural product methyltransferases involved in secondary metabolism in Medicago sativa (alfalfa). Here we report the crystal structure of ChOMT in complex with the product S-adenosyl-l-homocysteine and the substrate isoliquiritigenin (4,2',4'-trihydroxychalcone) refined to 1.8 A as well as the crystal structure of IOMT in complex with the products S-adenosyl-l-homocysteine and isoformononetin (4'-hydroxy-7-methoxyisoflavone) refined to 1.4 A. These two OMTs constitute the first plant methyltransferases to be structurally characterized and reveal a novel oligomerization domain and the molecular determinants for substrate selection. As such, this work provides a structural basis for understanding the substrate specificity of the diverse family of plant OMTs and facilitates the engineering of novel activities in this extensive class of natural product biosynthetic enzymes.  相似文献   

7.
8.
9.
植物次生代谢物途径及其研究进展   总被引:8,自引:0,他引:8  
植物次生代谢是植物在长期进化过程中与环境相互作用的结果,由初生代谢派生。萜类、生物碱类、苯丙烷类为植物次生代谢物的主要类型,其代谢途径多以代谢频道形式存在,具有种属、生长发育期等特异性。从植物次生代谢物的分类、代谢途径及代谢调控基因工程等方面展开论述,重点介绍了次生代谢物的生物合成途径,以及利用基因工程等技术对植物次生代谢途径进行遗传改良等方面的研究进展,为全面认识植物代谢网络、合理定位次生代谢及其关键酶、促进野生植物资源可持续利用等提供理论依据。  相似文献   

10.
One fundamental goal of current research is to understand how complex biomolecular networks took the form that we observe today. Cellular metabolism is probably one of the most ancient biological networks and constitutes a good model system for the study of network evolution. While many evolutionary models have been proposed, a substantial body of work suggests metabolic pathways evolve fundamentally by recruitment, in which enzymes are drawn from close or distant regions of the network to perform novel chemistries or use different substrates. Here we review how structural and functional genomics has impacted our knowledge of evolution of modern metabolism and describe some approaches that merge evolutionary and structural genomics with advances in bioinformatics. These include mining the data on structure and function of enzymes for salient patterns of enzyme recruitment. Initial studies suggest modern metabolism originated in enzymes of nucleotide metabolism harboring the P-loop hydrolase fold, probably in pathways linked to the purine metabolic subnetwork. This gateway of recruitment gave rise to pathways related to the synthesis of nucleotides and cofactors for an ancient RNA world. Once the TIM beta/alpha-barrel fold architecture was discovered, it appears metabolic activities were recruited explosively giving rise to subnetworks related to carbohydrate and then amino acid metabolism. Remarkably, recruitment occurred in a layered system reminiscent of Morowitz's prebiotic shells, supporting the notion that modern metabolism represents a palimpsest of ancient metabolic chemistries.  相似文献   

11.
Glycosyltransferases of plant secondary metabolism transfer nucleotide-diphosphate-activated sugars to low molecular weight substrates. Until recently, glycosyltransferases were thought to have only limited influence on the basic physiology of the plant. This view has changed. Glycosyltransferases might in fact have an important role in plant defense and stress tolerance. Recent results obtained with several recombinant enzymes indicate that many glycosyltransferases are regioselective or regiospecific rather than highly substrate specific. This might indicate how plants evolve novel secondary products, placing enzymes with broad substrate specificities downstream of the conserved, early, pivotal enzymes of plant secondary metabolism.  相似文献   

12.
Plant metabolism may be devided in two functional levels: The level of primary metabolism, indispensible for growth and development, and the level of secondary metabolism covering the chemical interactions between organisms, indispensible for survival and maintaining of a species in its ecosystem. Arguments and evidence from various fields of biology are presented in favour of the idea that plant secondary metabolism has most important functions shaped by evolution: historical backgrounds; the difference between plant and animal organisation in respect to defense strategies; the main strategies of plant chemical defense against competitors, predators, and pathogens; complexity of secondary biosynthesis and metabolic integration; variability and richness of structures as essential attributes of secondary metabolism; differences between secondary and primary metabolism are functional not structural.
Vorgetragen auf der Tagung der Deutschen Botanischen Gesellschaft in Wien, September 1984.  相似文献   

13.
Natural products represent an important source of drugs in a number of therapeutic fields, e.g. antiinfectives and cancer therapy. Natural products are considered as biologically validated lead structures, and evolution of compounds with novel or enhanced biological properties is expected from the generation of structural diversity in natural product libraries. However, natural products are often structurally complex, thus precluding reasonable synthetic access for further structure-activity relationship studies. As a consequence, natural product research involves semisynthetic or biotechnological approaches. Among the latter are mutasynthesis (also known as mutational biosynthesis) and precursor-directed biosynthesis, which are based on the cellular uptake and incorporation into complex antibiotics of relatively simple biosynthetic building blocks. This appealing idea, which has been applied almost exclusively to bacteria and fungi as producing organisms, elegantly circumvents labourious total chemical synthesis approaches and exploits the biosynthetic machinery of the microorganism. The recent revitalization of mutasynthesis is based on advancements in both chemical syntheses and molecular biology, which have provided a broader available substrate range combined with the generation of directed biosynthesis mutants. As an important tool in supporting combinatorial biosynthesis, mutasynthesis will further impact the future development of novel secondary metabolite structures.  相似文献   

14.

Background  

Secondary metabolites biosynthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) family of enzymes constitute several classes of therapeutically important natural products like erythromycin, rapamycin, cyclosporine etc. In view of their relevance for natural product based drug discovery, identification of novel secondary metabolite natural products by genome mining has been an area of active research. A number of different tailoring enzymes catalyze a variety of chemical modifications to the polyketide or nonribosomal peptide backbone of these secondary metabolites to enhance their structural diversity. Therefore, development of powerful bioinformatics methods for identification of these tailoring enzymes and assignment of their substrate specificity is crucial for deciphering novel secondary metabolites by genome mining.  相似文献   

15.
Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable.Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.  相似文献   

16.
The complex evolution of secondary metabolism is important in biology, drug development, and synthetic biology. To examine this problem at a fine scale, we compared the genomes and chemistry of 24 strains of uncultivated cyanobacteria, Prochloron didemni, that live symbiotically with tropical ascidians and that produce natural products isolated from the animals. Although several animal species were obtained along a >5500 km transect of the Pacific Ocean, P. didemni strains are >97% identical across much of their genomes, with only a few exceptions concentrated in secondary metabolism. Secondary metabolic gene clusters were sporadically present or absent in identical genomic locations with no consistent pattern of co-occurrence. Discrete mutations were observed, leading to new chemicals that we isolated from animals. Functional cassettes encoding diverse chemicals are exchanged among a single population of symbiotic P. didemni that spans the tropical Pacific, providing the host animals with a varying arsenal of secondary metabolites.  相似文献   

17.
The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids.  相似文献   

18.
构建高产高附加值产品的微生物细胞工厂是代谢工程的研究目标之一,设计高效的产品合成途径是实现这一目标的重要方式.不同微生物底盘因其代谢能力有所差异,故而可以利用的底物和生产的产品范围有限.为了扩大其生产能力,需要进行代谢途径从无到有的设计.传统代谢工程基于经验进行异源途径设计的方式低效且无法确保结果的全面性,而系统生物学...  相似文献   

19.
The evolution of new genes to make novel secondary compounds in plants is an ongoing process and might account for most of the differences in gene function among plant genomes. Although there are many substrates and products in plant secondary metabolism, there are only a few types of reactions. Repeated evolution is a special form of convergent evolution in which new enzymes with the same function evolve independently in separate plant lineages from a shared pool of related enzymes with similar but not identical functions. This appears to be common in secondary metabolism and might confound the assignment of gene function based on sequence information alone.  相似文献   

20.
Nonribosomal peptide and polyketide natural products are structurally diverse small molecules synthesized on complex enzyme assemblies. The ability to rationally engineer secondary metabolic pathways is a promising approach to novel therapeutics. Atomic resolution structures of biosynthetic enzymes provide information on active site architecture and macromolecular assembly that can aid in the engineering of new compounds. This review surveys recent applications toward biosynthetic engineering of natural products guided by structural biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号