首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small, acylated, methionine-containing peptides release histamine from human basophils. The characteristics of this reaction were compared to that of C5a- and IgE-induced release. fMet peptide-induced release requires Ca++ and is inhibited by EDTA in a manner similar to IgE- and C5a-mediated reactions. The fMet-Phe-Met-initiated reaction is complete within 2 min at temperatures of 25, 30, and 37 degrees C; but does not occur at 0 degrees C. There was a large variation in the capacity of leukocytes from different donors to release histamine with fMet peptides. However, there was no correlation in the capacity of leukocytes to release histamine with fMet-Phe-Met and their release with C5a or anti-IgE. The release by fMet-Phe-Met (but not by C5a or anti-IgE) was reversibly inhibited by a nonreleasing tripeptide. Leukocytes could be desensitized to the action of active fMet-peptide by preincubation with the peptide in the absence of cations. After washing, these cells released normally with C5a or anti-IgE. Conversely, cells desensitized to the action of C5a- or IgE-mediated reactions released normally with fMet peptides. There was cross-desensitization between different active peptides, and inactive peptides could not desensitize the leukocytes. Pharmacologic agents had similar effects on C5a and fMet peptide-induced release (e.g., lack of enhancement with deuterium oxide; enhancement with cytochalasin B; and inhibition with aminophylline and dibutyryl cyclic AMP). Therefore, histamine release with fMet peptides is initiated by their binding to and activation of a specific receptor on the basophil; the reaction beyond that point is similar to the C5a-mediated reaction.  相似文献   

2.
The activation of human serum complement by incubation with zymosan generates C5a which releases histamine from autologous basophils. The characteristics of the C5a-induced histamine release were investigated. It is similar to IgE-mediated reactions in requiring Ca++ and in being inhibited by EDTA. However, it has marked differences from IgE-mediated reactions. C5a, at all concentrations, released histamine completely in less than 2 min. The C5a reaction has a narrow pH optimum that antigen-induced release and occurs well at 17 degrees to 37 degreesC but not at 0 degreesC. The optimal reaction temperature is 25 degrees to 30 degrees C. Unlike the antigen-induced release, no two-stage activation with C5a for the release of histamine could be demonstrated. There was additive release between C5a- IgE-mediated reactions. Leukocytes could be desensitized to the C5a-mediated reaction by 1) incubating the cells at 37 degrees C for 45 min, 2) pretreating the leukocytes with activated serum in the presence of EDTA, and 3) adding the activated serum to the leukocytes at 0 degrees C before transferring to the optimal reaction temperatures. Cells desensitized to the complement-induced release have normal reactions to IgE-mediated histamine release. In parallel experiments, cells from allergic donors desensitized for IgE-mediated reactions by incubation with antigen under sub-optimal conditions release histamine normally upon the addition of C5a. The results indicate that histamine release by C5a involves a mechanism of basophil activation that is different from the pathway involved in the IgE-induced reaction.  相似文献   

3.
The antigen-induced IgE-mediated release of histamine from human basophils has previously been shown to require calcium, to be inhibited by agents which raise cyclic AMP levels and by high antigen levels, and to be unaffected by cyclic GMP. The interrelationship between these phenomena has been studied. The major findings are: 1) in the region of antigen-excess inhibition dibutyryl cyclic AMP potentiates release; 2) antigen-excess inhibition is seen at lower antigen concentrations when the calcium concentration is reduced from 0.6 to 0.1 mM; and 3) cyclic GMP modestly potentiates release when the calcium concentration is 0.1 mM.  相似文献   

4.
We previously reported that endogenous nitric oxide (NO) is involved in the peripheral control of gastric acid secretion induced by some secretagogues, and that endogenous NO is involved in the acid secretion process via histamine release from histamine-containing cells. However, the stimulus-secretion coupling in the cells remains to be clarified. In the present study, we investigated the effect of dibutyryl cyclic GMP on gastric acid secretion in mouse isolated stomach and on histamine release in gastric mucosal cells, in comparison with those of dibutyryl cyclic AMP. Dibutyryl cyclic GMP (300 microM) produced a slight but significant increase of gastric acid secretion, which was completely inhibited by the histamine-H2 receptor antagonist famotidine. In contrast, dibutyryl cyclic GMP (1 mM) markedly inhibited histamine-induced acid secretion. Dibutyryl cyclic AMP (100 microM) produced a sustained increase of gastric acid secretion. The pretreatment with famotidine partially inhibited dibutyryl cyclic AMP-induced gastric acid secretion. Dibutyryl cyclic GMP and dibutyryl cyclic AMP significantly increased the histamine release from gastric mucosal cells. These results suggest that both intracellular cyclic GMP and cyclic AMP act as second messengers for histamine release in the histamine-containing cells, probably ECL cells. On the other hand, in gastric parietal cells, cyclic AMP has a stimulatory effect on gastric acid secretion, whereas cyclic GMP has an inhibitory effect.  相似文献   

5.
The effect of ethanol on histamine release from lungs of sensitized guinea pigs was studied in conjunction with measurements of tissue concentrations of cyclic AMP and cyclic GMP. Addition of antigen in vitro elicited a rapid increase in cyclic AMP and cyclic GMP and stimulated release of histamine. Ethanol (2%) inhibited antigen-induced release of histamine over 95% and completely inhibited the increase in both cyclic nucleotides. The activity of cyclic AMP-dependent protein kinase was only slightly affected by ethanol.Metiamide blocked the ovalbumin stimulated increase in cyclic AMP but not cyclic GMP. Pyrilamine did not prevent the rise in either cyclic nucleotide. This suggests that the antigen-induced rise in cyclic AMP is an indirect result of histamine released from the tissue. The inability of H1 and H2 receptor antagonists to affect antigen-induced elevation of cyclic GMP in sensitized lung fragments suggests that an elevation in cyclic GMP might be either a primary event in the mediator release sequence or secondary to the release of a mediator other than histamine. The ability of ethanol to inhibit mediator release might be due to its capacity to attenuate the antigen-induced elevation of cyclic GMP in sensitized lung.  相似文献   

6.
The IgE-mediated histamine release from mouse mast cells requires Ca++, is optimal at 37 degrees C, and is enhanced by phosphatidylserine. The rate of release is relatively slow. The mast cells can be activated to release histamine by either anti-IgE or anti-Fab antibodies and, in the case of cells from sensitized mice, by the immunizing antigen. The incubation of mast cells with antigen in the absence of Ca++ or phosphatidylserine fails to release histamine. Such cells are desensitized to the further addition under optimal conditions of the same antigen. Desensitization is antigen specific, requires optimal levels of antigen, and occurs at both 30 degrees and 37 degrees C. In contrast, anti-IgE desensitizes all IgE-mediated histamine release reactions.  相似文献   

7.
DFP inhibits early events in antigen-induced histamine release from human leukocytes. If added to cells 5 min or more after antigen it is ineffective. If added with antigen it can be removed at 5 min but release will still be inhibited. In contrast, ethylenediaminetetraacetate (EDTA) and 2 deoxyglucose (2DG) still inhibit the reactions when added 5 min after antigen. During incubation of leukocytes for 90 to 120 min at 0 degrees C they react with specific antigen since they subsequently release significant quantities of histamine after washing and reincubation at 37 degrees C without addition of antigen. Such priming at 0 degrees C is at least equivalent to priming for 2 to 4 min at 37 degrees C. During antigen priming at 0 degrees C the cells are not activated beyond the step in the release sequence which is inhibited by diisopropylfluorophosphate (DFP). This is apparent from the undiminished inhibitory activity of DFP on these cells. Furthermore, cells primed with antigen at 0 degrees C in the presence of DFP release as much histamine after washing and incubation at 37 degrees D as control cells primed in the absence of DFP. Incubation of leukocytes with specific antigen at 37 degrees C for 3 min resulted in significant but not quite complete priming for subsequent histamine release in the absence of antigen. Most of these primed cells were not activated beyond the step inhibitable by DFP. However, some had completed the entire sequence including the release of histamine while others had not released their histamine but were not inhibited by DFP from subsequent release. After 5 min incubation with antigen at 37 degrees C almost all leukocytes had progressed beyond the stage which is inhibited by DFP. Incubation of leukocytes at 37 degrees C with DFP but without antigen for up to 15 min followed by washing did not impair subsequent antigen-induced histamine release by these cells. Thus, DFP was inhibitory under these conditions only after antigen activation of leukocytes.  相似文献   

8.
Induction of histamine secretion by polycations   总被引:7,自引:0,他引:7  
Poly(arginine), poly(lysine) and poly(ornithine) induce histamine secretion from human basophil leukocytes in the concentration range 1--100 nmol/l. Histamine secretion induced by poly(arginine) requires extracellular calcium at 0.1--1 mmol/l. Strontium (1--10 mmol/l) will substitute for calcium. Lanthanum (30--90 nmol/l) inhibits histamine release induced by poly(arginine). Histamine secretion induced by poly(arginine) is inhibited by 1--30 mumol/l N-ethyl-maleimide, 0.3--3 mmol/l 2-deoxy-D-glucose, 0.3--3 mmol/l dibutyryl cyclic AMP, 0.3--3 mmol/l, adenosine 3'5'-cyclicphosphorothioate. The action of poly(arginine) is inhibited by pretreatment of basophils at 47 degrees C or with neuraminidase. 10 microgram/ml heparin inhibits the response to poly(arginine). Histamine releasing potency of the polymer amino acids is dependent on chain length of the peptide. Succinylated poly(lysine) is inactive. Monomer amino acids do not release histamine and do not inhibit the action of the polymers. Histones and protamine do not release histamine, nor do the peptides eledoisin and tuftsin. Putrescine, cadaverine, spermine and spermidine do not release histamine. Poly(glutamic acid), poly(aspartic acid) and poly(tyrosine) are also inactive. The IgE-mediated release of histamine appears to be independent of that mediated by poly(arginine).  相似文献   

9.
mAb were selected that inhibited IgE-mediated histamine release from human basophils. The two mAb, HB 9AB6 and HB 10AB2, are of the IgG1 subclass and have a 50% inhibitory concentration of 0.16 to 1.1 micrograms/ml. The mAb required several hours of incubation with the basophils at 37 degrees C to induce maximum inhibition. Neither mAb directly released histamine from human basophils nor did they inhibit release induced by formylmethionine tripeptide, calcium ionophore A23187, or PMA. There was little inhibition of IgE-mediated release when the cells were preincubated with the mAb at 4 degrees C. By FACS analysis the 2 mAb bound to all peripheral blood leukocytes and immunoprecipitated a approximately 200-kDa protein from peripheral blood leukocytes and several cell lines of human origin. In binding studies and by sequential immunoprecipitation the 2 mAb and a known anti-CD45 mAb bound to the same protein. However, the mAb recognized different epitopes. Therefore, mAb to the CD45 surface Ag, a membrane protein tyrosine phosphatase, inhibits IgE-receptor mediated histamine release from human basophils. The data suggest a link between protein tyrosine phosphorylation and high affinity IgE receptor-mediated signal transduction in human basophils.  相似文献   

10.
Histamine activated adenylate cyclase in pig skin (epidermal) slices, resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of cyclic AMP-phosphodiesterase inhibitors (theophylline, papaverine). A specific H2 receptor inhibitor (metiamide) inhibited the effect of histamine completely, while other antihistamines (diphenhydramine, acetophenazine, perphenazine, fluphenazine, promethazine) inhibited the effect of histamine to various lesser degrees. It has been shown that both epinephrine and prostaglandin E stimulate epidermal adenylate cyclase. Our data using specific blocking agents indicate that histamine, epinephrine and prostaglandin E2 act independently on the epidermal adenylate cyclase system.  相似文献   

11.
Histamine activated adenylate cyclase in pig skin (epidermal) slices, resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of cyclic AMP-phosphodiesterase inhibitors (theophylline, papaverine). A specific H2 receptor inhibitor (metiamide) inhibited the effect of histamine completely, while other antihistamines (diphenhydramine, acetophenazine, perphenazine, fluphenazine, promethazine) inhibited the effect of histamine to various lesser degrees. It has been shown that both epinephrine and prostaglandin E stimulate epidermal adenylate cyclase. Our data using specific blocking agents indicate that histamine, epinephrine and prostaglandin E2 act independently on the epidermal adenylate cyclase system.  相似文献   

12.
The effects of forskolin (1 microM) and EGTA (5 mM) on indirect cyclic AMP responses in slices of guinea-pig cerebral cortex were examined. Forskolin had little effect on the direct 2-chloroadenosine-stimulated cyclic AMP response. However, it completely abolished the glutamate-induced augmentation of this response. In contrast, forskolin had very little effect on the indirect cyclic AMP responses to noradrenaline, 5-hydroxytryptamine, and histamine. Conversely, rapid removal of extracellular calcium with EGTA 2 min before addition of the indirectly acting agent markedly reduced the augmentation responses produced by these latter agonists, but had little effect on the glutamate augmentation. When EGTA was added once a steady level of cyclic AMP had been achieved with the indirect agents, it was without effect on any of the responses. Thus, calcium appears to have a role in the early, but not the later, stages of the noradrenaline, 5-hydroxytryptamine, and histamine responses. A role for protein kinase C in the glutamate augmentation response was suggested, because forskolin inhibited the augmentation of the 2-chloroadenosine response produced by phorbol esters (which mimic the actions of diacylglycerol in activating protein kinase C). We conclude that there is more than one mechanism by which the augmentation of cyclic AMP responses can occur.  相似文献   

13.
Preincubation of eosinophils with 10(-5) M or higher concentrations of histamine inhibited the eosinophil chemotactic response to endotoxin-activated serum whether by using the nucleopore filter assay and counting the cells migrating through the filter, or by using the Zigmond-Hirsch assay and counting the cells at each 10-mum interval. When the H2-receptor sites on the eosinophils were blocked by metiamide, the inhibitory capacity of histamine was prevented. Preincubation of eosinophils with 10(-6) M histamine increased the number of responding eosinophils to endotoxin-activated serum and this enhancement was blocked by an H1-receptor antagonist. Isoproteronol and aminophylline inhibited eosinophil movement and increasing concentrations of dibutryl cyclic AMP inhibited eosinophil migration. Concentrations of histamine that consistently resulted in inhibition of eosinophil movement stimulated an increase in cyclic AMP that was prevented by blocking the H2-receptor but not the H1-receptor. Thus, histamine-dependent inhibition of the eosinophil chemotactic response to other agents is mediated through the H2-receptor and is associated with an increase in the intracellular level of cyclic AMP whereas histamine dependent enhancement of eosinophil migration to other agents appears to be mediated through the H1-receptor. Eosinophils behave as a heterogeneous population as assessed by the ability of histamine to augment or inhibit cell migration. This may reflect differences in H1 to H2 receptor density or cell responsiveness to receptor stimulation. The chemoattractant activity of histamine itself is not influenced by H1 or H2 receptor antagonists, thus it is possible that an eosinophil has a third type of histamine receptor.  相似文献   

14.
The magainins are basic 23 amino acid peptides with a broad spectrum of antimicrobial activity. Their bactericidal effect has been attributed to their capacity to interact with lipid bilayer membranes. We observed histamine release by magainin-2 amide from rat peritoneal mast cells (ED50 = 13 micrograms/ml) but not from human basophils. This histamine-releasing reaction from peritoneal mast cells was due to a secretory rather than cytolytic effect, i.e., release occurred without concomitant liberation of lactic dehydrogenase. Furthermore, the pretreatment of mast cells with magainin-2 amide did not desensitize cells against subsequent challenge with other secretagogues. Maximum histamine release occurred in less than a minute at 25 and 37 degrees C. The addition of Ca2+ was not required for histamine release, although release was enhanced by the addition of 0.3-1 mM Ca2+. The addition of 3 mM Ca2+ or Mg2+ was markedly inhibitory. The presence of Na+ or Cl- ions in the medium was not required for release. Therefore, histamine release is not due to the formation of anion-selective channels in the membrane of mast cells. The results indicated that the characteristics of histamine secretion induced by magainin-2 amide were unlike IgE-mediated release but were similar to the mechanism of release attributed to some other basic peptides and to compound 48/80.  相似文献   

15.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3'5'-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

16.
The mechasism of human basophil histamine release by the calcium ionophore A23187 has been compared to that induced by the interaction of antigen with cell bound IgE antibody. Ionophore induced histamine release (Ion. H.R.) occurs with the leukocytes of both normal and allergic donors. It is completely calcium dependent; LaCl3 inhibits both Ion. H.R. and antigen induced histamine release (Ag. H.R.) at about 10-minus 7 M. The kinetics of Ion. H.R. suggest that this process has no "desensitization" phase as does Ag. H.R. and the ionophore is fully active on antigen-desensitized cells. Pharmacologic studies indicate that dibutyryl cyclic AMP and agents which increase endogenous cyclic AMP levels do not inhibit Ion. H.R. as they inhibit the early stages of Ag. H.R. Of the agents which affect microtubules, colchicine inhibits and D2O enhances Ion. H.R. in a manner which is qualitatively similar but quantitatively less marked than their effects on Ag. H.R. The metabolic antagonist 2-deoxyglucose inhibits both Ion. H.R. and Ag. H.R. in a similar fashion. Based on these data and the observation that cells pretreated with ionophore show a marked (synergistic) enhancement of Ag. H.R. we conclude that Ion. H.R. has a similar or identical mechanism to the later stages if Ag. H.R. but "short circuits" the cyclic AMP-associated events of Ag. H.R.  相似文献   

17.
The effects of 4-bromo-5-(3-ethoxy-4-methoxybenzylamino)-3(2H)-pyridazinone (NZ-107) on immediate type hypersensitivity reactions in rats and guinea-pigs were studied. 1. When NZ-107, at a dose of 50 mg/kg (i.p.) or 100 mg/kg (orally), was administered to rats, 48-h homologous passive cutaneous anaphylaxis (PCA) reaction and histamine-, leukotriene C4 (LTC4)- and leukotriene D4 (LTD4)-induced skin reactions were suppressed by the agent. 2. NZ-107 (10(-6) g/ml) inhibited both LTC4- and LTD4-induced contractions of isolated rat stomach smooth muscle. 3. NZ-107 inhibited antigen-induced histamine release from rat peritoneal mast cells by 26% at a concentration of 10(-4) g/ml. 4. NZ-107, at doses of 25 and 50 mg/kg (orally), significantly inhibited guinea-pig 3-h heterologous PCA reaction. 5. NZ-107 inhibited antigen-induced histamine release from guinea-pig lung tissue by 17% and 48% at concentrations of 5 x 10(-5) and 10(-4) g/ml, respectively. 6. NZ-107, at doses of 25 and 50 mg/kg (i.p.), inhibited antigen-induced bronchoconstriction and eosinophil accumulation in the bronchoalveolar lavage fluid (BALF) of guinea-pigs. These results suggest that NZ-107 has anti-allergic action including inhibition of eosinophil accumulation in an antigen-challenged airway lesion in rats and guinea-pigs. The anti-allergic action of this agent is thought to be due to its action as a histamine and LT antagonist and its consequent inhibition of antigen-induced histamine release.  相似文献   

18.
Na+ and K+ are the major extra- and intracellular cations, respectively. We have thus studied the role of these ions on human basophil histamine release by modifying their transmembrane gradients or by increasing membrane ion fluxes using ionophores. 1) When external Na+ (reduced to 4 mM) was replaced by the nonpermeating Na+ substitute N-methyl-D-glucamine, the release of histamine was enhanced in 2 mM Ca2+ (from 37.5 +/- 8.0% in 140 mM Na+ to 68.5 +/- 9.1% in low Na+) and became possible in the presence of low Ca2+ (at 1 microM Ca2+: from 0.6 +/- 0.7% in 140 mM Na+ to 36.2 +/- 8.0% in low Na+); moreover, in low Na+, the release of histamine became partly independent on Ca2+ influx. 2) Increasing the Na+ influx with the cation channel-forming gramicidin D inhibited the release of histamine by 33.2 +/- 13.6% (n = 6) in an external Na(+)-dependent manner. 3) Decreasing K+ efflux using K+ channel blockers (4-aminopyridine, quinine, sparteine) inhibited histamine release in a dose-response manner. 4) The K+ ionophore valinomycin, which increases K+ efflux, slightly enhanced IgE-mediated histamine release when used alone, whereas it potentiated the release of histamine from leukocytes previously treated with 4-aminopyridine by 57.0 +/- 18.6% (n = 7). 5) Decreasing K+ efflux by increasing external K+ inhibited IgE-mediated release in a similar manner as Na+ did. The inhibitory effects of Na+ and high K+ were not additive, thus suggesting that both cations inhibited the release by a common mechanism. In conclusion 1) our data evidence that histamine release from human basophils is inhibited by Na+ influx and potentiated by K+ efflux; 2) they suggest that K+ channels are present on the basophil membrane and that Na+ and K+ fluxes act on histamine release most probably via modulation of membrane potential.  相似文献   

19.
AMP nucleosidase: kinetic mechanism and thermodynamics   总被引:1,自引:0,他引:1  
W E DeWolf  F A Emig  V L Schramm 《Biochemistry》1986,25(14):4132-4140
The kinetic mechanism of AMP nucleosidase (EC 3.2.2.4; AMP + H2O----adenine + ribose 5-phosphate) from Azotobacter vinelandii is rapid-equilibrium random by initial rate studies of the forward and reverse reactions in the presence of MgATP, the allosteric activator. Inactivation-protection studies have established the binding of adenine to AMP nucleosidase in the absence of ribose 5-phosphate. Product inhibition by adenine suggests a dead-end complex of enzyme, AMP, and adenine. Methanol does not act as a nucleophile to replace H2O in the reaction, and products do not exchange into substrate during AMP hydrolysis. Thus, the reactive complex has the properties of concerted hydrolysis by an enzyme-directed water molecule rather than by formation of a covalent intermediate with ribose 5-phosphate. The Vmax in the forward reaction (AMP hydrolysis) is 300-fold greater than that in the reverse reaction. The Keq for AMP hydrolysis has been experimentally determined to be 170 M and is in reasonable agreement with Keq values of 77 and 36 M calculated from Haldane relationships. The equilibrium for enzyme-bound substrate and products strongly favors the enzyme-product ternary complex ([enzyme-adenine ribose 5-phosphate]/[enzyme-AMP] = 480). The temperature dependence of the kinetic constants gave Arrhenius plots with a distinct break between 20 and 25 degrees C. Above 25 degrees C, AMP binding demonstrates a strong entropic effect consistent with increased order in the Michaelis complex. Below 20 degrees C, binding is tighter and the entropic component is lost, indicating distinct enzyme conformations above and below 25 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In order to investigate the relationship between microtubular function, insulin release and islet cyclic AMP metabolism, the effects of 2H2O, colchicine and vincristine were studied in rat islets prelabeled with [3H]adenine. Glucose-induced insulin secretion and efflux of cyclic [3H]AMP was markedly inhibited by 8–50% 2H2O. At a higher concentration (75%), deuterated water still suppressed insulin release, while the inhibition of nucleotide release was abolished. Glucose-induced intra-islet cyclic [3H]AMP accumulation was augmented by 2H2O progressively with time. With 75% 2H2O, although efflux of cyclic AMP was no more inhibited, intra-islet accumulation of the nucleotide was still enhanced. The cyclic AMP efflux induced by cholera toxin, or a high concentration of 3-isobutyl-1-methylxanthine was suppressed and the intra-islet nucleotide accumulation was enhanced by 2H2O. The latter effect tended to be less pronounced than when glucose was the stimulator. All the effects of 2H2O on glocuse-stimulated islets were mimicked by incubating the tissue in H2O at 28°C.Colchicine and vincristine had no significant effect on glucose-induced insulin release, and did not enhance the intra-islet cyclic [3H]AMP response; efflux of the nucleotide was, however, significantly inhibited. This pattern of response was shared with probenecid. Preincubation of islets with colchicine did not influence the subsequent effects of 2H2O on insulin release and cyclic AMP metabolism.It is concluded that: (1) enhancement of intra-islet cyclic AMP accumulation by 2H2O is not due to inhibition of the nucleotide efflux; (2) the effects on cyclic AMP metabolism described here are not exclusive for microtubular affecting agents and do not seem to be related to the microtubular system of the islet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号