首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in nonplant higher eukaryotes. Murine erythroid 5-aminolevulinate synthase has been purified to homogeneity from an Escherichia coli overproducing strain, and the catalytic and spectroscopic properties of this recombinant enzyme were compared with those from nonrecombinant sources (Ferreira, G.C. & Dailey, H.A., 1993, J. Biol. Chem. 268, 584-590). 5-Aminolevulinate synthase is a pyridoxal 5'-phosphate-dependent enzyme and is functional as a homodimer. The recombinant 5-aminolevulinate synthase holoenzyme was reduced with tritiated sodium borohydride and digested with trypsin. A single peptide contained the majority of the label. The tritiated peptide was isolated, and its amino acid sequence was determined; it corresponded to 15 amino acids around lysine 313, to which pyridoxal 5'-phosphate is bound. Significantly, the pyridoxyllysine peptide is conserved in all known cDNA-derived 5-aminolevulinate synthase sequences and is present in the C-terminal (catalytic) domain. Mutagenesis of the 5-aminolevulinate synthase residue, which is involved in the Schiff base linkage with pyridoxal 5'-phosphate, from lysine to alanine or histidine abolished enzyme activity in the expressed protein.  相似文献   

2.
    
The two active sites of dimeric 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are located on the subunit interface with contribution of essential amino acids from each subunit. Linking the two subunits into a single polypeptide chain dimer (2XALAS) yielded an enzyme with an approximate sevenfold greater turnover number than that of wild-type ALAS. Spectroscopic and kinetic properties of 2XALAS were investigated to explore the differences in the coenzyme structure and kinetic mechanism relative to those of wild-type ALAS that confer a more active enzyme. The absorption spectra of both ALAS and 2XALAS had maxima at 410 and 330 nm, with a greater A(410)/A(330) ratio at pH approximately 7.5 for 2XALAS. The 330 nm absorption band showed an intense fluorescence at 385 nm but not at 510 nm, indicating that the 330 nm absorption species is the substituted aldamine rather than the enolimine form of the Schiff base. The 385 nm emission intensity increased with increasing pH with a single pK of approximately 8.5 for both enzymes, and thus the 410 and 330 nm absorption species were attributed to the ketoenamine and substituted aldamine, respectively. Transient kinetic analysis of the formation and decay of the quinonoid intermediate EQ(2) indicated that, although their rates were similar in ALAS and 2XALAS, accumulation of this intermediate was greater in the 2XALAS-catalyzed reaction. Collectively, these results suggest that ketoenamine is the active form of the coenzyme and forms a more prominent coenzyme structure in 2XALAS than in ALAS at pH approximately 7.5.  相似文献   

3.
Human cystathionine β-synthase (CBS) catalyzes a pyridoxal 5′-phosphate (PLP) dependent β-replacement reaction to synthesize cystathionine from serine and homocysteine. The enzyme is unique in bearing not only a catalytically important PLP but also heme. In order to study a regulatory process mediated by heme, we performed mutagenesis of Arg-51 and Arg-224, which have hydrogen-bonding interactions with propionate side chains of the prosthetic group. It was found that the arginine mutations decrease CBS activity by approximately 50%. The results indicate that structural changes in the heme vicinity are transmitted to PLP existing 20 Å away from heme. A possible explanation of our results is discussed on the basis of CBS structure.  相似文献   

4.
5.
    
Acetylornithine aminotransferase (AcOAT) is one of the key enzymes involved in arginine metabolism and catalyzes the conversion of N-acetylglutamate semialdehyde to N-acetylornithine (AcOrn) in the presence of L-glutamate. It belongs to the Type I subgroup II family of pyridoxal 5'-phosphate (PLP) dependent enzymes. E. coli biosynthetic AcOAT (eAcOAT) also catalyzes the conversion of N-succinyl-L-2-amino-6-oxopimelate to N-succinyl-L,L-diaminopimelate, one of the steps in lysine biosynthesis. In view of the critical role of AcOAT in lysine and arginine biosynthesis, structural studies were initiated on the enzyme from S. typhimurium (sAcOAT). The K(m) and k(cat)/K(m) values determined with the purified sAcOAT suggested that the enzyme had much higher affinity for AcOrn than for ornithine (Orn) and was more efficient than eAcOAT. sAcOAT was inhibited by gabaculine (Gcn) with an inhibition constant (K(i)) of 7 microM and a second-order rate constant (k(2)) of 0.16 mM(-1) s(-1). sAcOAT, crystallized in the unliganded form and in the presence of Gcn or L-glutamate, diffracted to a maximum resolution of 1.90 A and contained a dimer in the asymmetric unit. The structure of unliganded sAcOAT showed significant electron density for PLP in only one of the subunits (subunit A). The asymmetry in PLP binding could be attributed to the ordering of the loop L(alphak-) (betam) in only one subunit (subunit B; the loop from subunit B comes close to the phosphate group of PLP in subunit A). Structural and spectral studies of sAcOAT with Gcn suggested that the enzyme might have a low affinity for PLP-Gcn complex. Comparison of sAcOAT with T. thermophilus AcOAT and human ornithine aminotransferase suggested that the higher specificity of sAcOAT towards AcOrn may not be due to specific changes in the active site residues but could result from minor conformational changes in some of them. This is the first structural report of AcOAT from a mesophilic organism and could serve as a basis for drug design as the enzyme is important for bacterial cell wall biosynthesis.  相似文献   

6.
    
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

7.
Son M  Park I  Lee OH  Rhee I  Park C  Yun Y 《Molecules and cells》2012,33(4):407-414
Lck Interacting Membrane protein (LIME) was previously characterized as a transmembrane adaptor protein mediating TCR-dependent T cell activation. Here, we show that LIME associates with Vav in response to TCR stimulation and is required for Vav guanine nucleotide exchange factor (GEF) activity for Rac1. Consistent with this finding, actin polymerization at the immunological synapse (IS) was markedly enhanced by overexpression of LIME, but was reduced by expression of a LIME shRNA. Moreover, TCR-mediated cell adhesion to ICAM-1, laminin, or fibronectin was downregulated by expression of LIME shRNA. In addition, in the IS, LIME but not LAT was found to localize at the peripheral-supramolecular activation cluster (p-SMAC) where the integrins were previously shown to be localized. Together, these results establish LIME as a transmembrane adaptor protein linking TCR stimulation to IS formation and integrin activation through activation of Vav.  相似文献   

8.
O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5′-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff’s base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.  相似文献   

9.
    
Pyridoxal biosynthesis lyase (PdxS) is an important player in the biosynthesis of pyridoxal 5′‐phosphate (PLP), the biologically active form of vitamin B6. PLP is an important cofactor involved in the metabolic pathway of amine‐containing natural products such as amino acids and amino sugars. PdxS catalyzes the condensation of ribulose 5‐phosphate (Ru5P), glyceraldehyde 3‐phosphate (G3P) and ammonia, while glutamine amidotransferase (PdxT) catalyzes the production of ammonia from glutamine. PdxS and PdxT form a complex, PLP synthase, and widely exist in eubacteria, archaea, fungi and plants. To facilitate further structural comparisons among PdxS proteins, the structural analysis of PdxS from Pyrococcus horikoshii encoded by the Ph1355 gene was initiated. PdxS from P. horikoshii was overexpressed in Escherichia coli and crystallized at 296 K using 2‐methyl‐2,4‐pentanediol as a precipitant. Crystals of P. horikoshii PdxS diffracted to 2.61 Å resolution and belonged to the monoclinic space group P21, with unit‐cell parameters a = 59.30, b = 178.56, c = 109.23 Å, β = 102.97°. The asymmetric unit contained six monomers, with a corresponding VM of 2.54 Å3 Da−1 and a solvent content of 51.5% by volume.  相似文献   

10.
The trypsin inhibitors in buckwheat seeds were isolated by affinity chromatography on trypsin-Sepharose 4B, and the components were fractionated by chromatography on DEAE-Sepharose CL-6B. The major components, inhibitors I, II and III, were found to be homogeneous proteins with molecular weight of about 8,000. Trypsin inhibitory activity was more pronounced than the chymotrypsin inhibitory activity in all the inhibitor preparation obtained. The three major inhibitors had similar amino acid compositions and had no detectable amounts of tryptophan and carbohydrate. A high level of acidic and basic amino acid residues and a low level of methionine, tyrosine and phenylalanine residues characterized the inhibitors. Although the inhibitors I and II were particularly thermostable, inhibitor III, the most abundant component, was shown to be relatively heat-labile.  相似文献   

11.
5-Aminolevulinate synthase (ALAS) catalyzes the first step in mammalian heme biosynthesis, the pyridoxal 5′-phosphate (PLP)-dependent and reversible reaction between glycine and succinyl-CoA to generate CoA, CO2, and 5-aminolevulinate (ALA). Apart from coordinating the positioning of succinyl-CoA, Rhodobacter capsulatus ALAS Asn-85 has a proposed role in regulating the opening of an active site channel. Here, we constructed a library of murine erythroid ALAS variants with substitutions at the position occupied by the analogous bacterial asparagine, screened for ALAS function, and characterized the catalytic properties of the N150H and N150F variants. Quinonoid intermediate formation occurred with a significantly reduced rate for either the N150H- or N150F-catalyzed condensation of glycine with succinyl-CoA during a single turnover. The introduced mutations caused modifications in the ALAS active site such that the resulting variants tipped the balance between the forward- and reverse-catalyzed reactions. Although wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold slower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the N150F variant catalyzes the forward reaction at a mere 1.2-fold faster rate than that of the reverse reaction, and the N150H variant reverses the rate values with a 1.7-fold faster rate for the reverse reaction than that for the forward reaction. We conclude that the evolutionary selection of Asn-150 was significant for optimizing the forward enzymatic reaction at the expense of the reverse, thus ensuring that ALA is predominantly available for heme biosynthesis.  相似文献   

12.
  总被引:1,自引:0,他引:1  
Cysteine 111 in Dopa decarboxylase (DDC) has been replaced by alanine or serine by site-directed mutagenesis. Compared to the wild-type enzyme, the resultant C111A and C111S mutant enzymes exhibit Kcat values of about 50% and 15%, respectively, at pH 6.8, while the K(m) values remain relatively unaltered for L-3,4-dihydroxyphenylalanine (L-Dopa) and L-5-hydroxytryptophan (L-5-HTP). While a significant decrease of the 280 nm optically active band present in the wild type is observed in mutant DDCs, their visible co-enzyme absorption and CD spectra are similar to those of the wild type. With respect to the wild type, the Cys-111-->Ala mutant displays a reduced affinity for pyridoxal 5'-phosphate (PLP), slower kinetics of reconstitution to holoenzyme, a decreased ability to anchor the external aldimine formed between D-Dopa and the bound co-enzyme, and a decreased efficiency of energy transfer between tryptophan residue(s) and reduced PLP. Values of pKa and pKb for the groups involved in catalysis were determined for the wild-type and the C111A mutant enzymes. The mutant showed a decrease in both pK values by about 1 pH unit, resulting in a shift of the pH of the maximum velocity from 7.2 (wild-type) to 6.2 (mutant). This change in maximum velocity is mirrored by a similar shift in the spectrophotometrically determined pK value of the 420-->390 nm transition of the external aldimine. These results demonstrate that the sulfhydryl group of Cys-111 is catalytically nonessential and provide strong support for previous suggestion that this residue is located at or near the PLP binding site (Dominici P, Maras B, Mei G, Borri Voltattorni C. 1991. Eur J Biochem 201:393-397). Moreover, our findings provide evidence that Cys-111 has a structural role in PLP binding and suggest that this residue is required for maintenance of proper active-site conformation.  相似文献   

13.
    
5‐Aminolevulinate synthase (ALAS) controls the rate‐limiting step of heme biosynthesis in mammals by catalyzing the condensation of succinyl‐coenzyme A and glycine to produce 5‐aminolevulinate, coenzyme‐A (CoA), and carbon dioxide. ALAS is a member of the α‐oxoamine synthase family of pyridoxal 5′‐phosphate (PLP)‐dependent enzymes and shares high degree of structural similarity and reaction mechanism with the other members of the family. The X‐ray crystal structure of ALAS from Rhodobacter capsulatus reveals that the alkanoate component of succinyl‐CoA is coordinated by a conserved arginine and a threonine. The functions of the corresponding acyl‐CoA‐binding residues in murine erthyroid ALAS (R85 and T430) in relation to acyl‐CoA binding and substrate discrimination were examined using site‐directed mutagenesis and a series of CoA‐derivatives. The catalytic efficiency of the R85L variant with octanoyl‐CoA was 66‐fold higher than that of the wild‐type protein, supporting the proposal of this residue as key in discriminating substrate binding. Substitution of the acyl‐CoA‐binding residues with hydrophobic amino acids caused a ligand‐induced negative dichroic band at 420 nm in the CD spectra, suggesting that these residues affect substrate‐mediated changes to the PLP microenvironment. Transient kinetic analyses of the R85K variant‐catalyzed reactions confirm that this substitution decreases microscopic rates associated with formation and decay of a key reaction intermediate and show that the nature of the acyl‐CoA tail seriously affect product binding. These results show that the bifurcate interaction of the carboxylate moiety of succinyl‐CoA with R85 and T430 is an important determinant in ALAS function and may play a role in substrate specificity.  相似文献   

14.
A new fluorometric method using semicarbazide for the determination of pyridoxal and pyridoxal 5′-phosphate (PLP) in whole blood, red cells and plasma has been developed. Semicarbazide breaks the Schiff base of PLP and proteins by “trans-Schiffization” reaction and forms semicarbazone of PLP. The semicarbazone of PLP emits strongly at 460 nm when excited at 380 nm. Several metabolic intermediates were tested for the possible interference. Only pyridoxal was found to interfere. The interference can be corrected since pyridoxal emits at 380 nm when excited at 320 nm. Using this method we found that rabbit red cells in vivo are freely permeable to PLP.  相似文献   

15.
Two types of new Sepharose-bound pyridoxal 5′-phosphate, N-immobilized and 3-0-immobilized pyridoxal 5′-phosphate analogues, were prepared by reacting pyridoxal 5′-phosphate with a bromoacetyl derivative of Sepharose 4B in dimethylformamide (50% v/v) and in potassium phosphate buffer (pH 6.0) for approx. 70 h at room temperature in the dark, respectively. The properties of these immobilized pyridoxal 5′-phosphate derivatives including their catalytic activities in the non-enzymatic cleavage reaction of tryptophan were studied in comparison with those of the 6-immobilized pyridoxal 5′-phosphate analogue reported previously by the present authors. The usefulness of these pyridoxal 5′-phosphate analogues in the preparation of immobilized tryptophanase was demonstrated.  相似文献   

16.
Alanine racemase of Bacillus stearothermophilus catalyzes transamination as a side reaction. Stereospecificity for the hydrogen abstraction from C-4′ of pyridoxamine 5′-phosphate occurring in the latter half transamination was examined. Both apo-wild-type and apo-fragmentary alanine racemases abstracted approximately 20 and 80% of tritium from the stereospecifically-labeled (4′S)- and (4′R)-[4′-3H]PMP, respectively, in the presence of pyruvate. Alanine racemase catalyzes the abstraction of both 4′S- and 4′R-hydrogen like amino acid racemase with broad substrate specificity. However, R-isomer preference is a characteristic property of alanine racemase.  相似文献   

17.
5-氨基乙酰丙酸(5-aminolevulinate,ALA)由5-氨基乙酰丙酸合酶(5-aminolevulinate synthase,ALAS)催化产生。利用重组细菌在大肠杆菌合成ALA已有不少研究。重组真核生物ALAS在大肠杆菌合成ALA的研究没有报道。酿酒酵母ALAS在大肠杆菌重组表达,在摇瓶培养条件下,分析了胞外ALA的产量,重组菌的生长状况和细胞中ALAS的活性,利用两种国产树脂纯化ALA,毛细管电泳分析确定ALA纯度在LB培养基中,初始pH 6.5,含有20mmol/L的酮戊酸、20mmol/L琥珀酸和20mmol/L的甘氨酸,37℃下诱导培养12h,胞外ALA的产量为162mg /L培养基。纯化的ALA纯度达到90%。  相似文献   

18.
Crystal structure of phosphodiesterase 4D and inhibitor complex(1)   总被引:3,自引:0,他引:3  
Lee ME  Markowitz J  Lee JO  Lee H 《FEBS letters》2002,530(1-3):53-58
Cyclic nucleotide phosphodiesterases (PDEs) regulate physiological processes by degrading intracellular second messengers, adenosine-3′,5′-cyclic phosphate or guanosine-3′,5′-cyclic phosphate. The first crystal structure of PDE4D catalytic domain and a bound inhibitor, zardaverine, was determined. Zardaverine binds to a highly conserved pocket that includes the catalytic metal binding site. Zardaverine fills only a portion of the active site pocket. More selective PDE4 inhibitors including rolipram, cilomilast and roflumilast have additional functional groups that can utilize the remaining empty space for increased binding energy and selectivity. In the crystal structure, the catalytic domain of PDE4D possesses an extensive dimerization interface containing residues that are highly conserved in PDE1, 3, 4, 8 and 9. Mutations of R358D or D322R among these interface residues prohibit dimerization of the PDE4D catalytic domain in solution.  相似文献   

19.
    
Cystathionine β‐synthase (CBS) is a pyridoxal‐5′‐phosphate‐dependent enzyme that catalyzes the first step of the transsulfuration pathway, namely the condensation of serine with homocysteine to form cystathionine. Mutations in the CBS gene are the single most common cause of hereditary homocystinuria, a multisystemic disease affecting to various extents the vasculature, connective tissues and central nervous system. At present, the crystal structure of CBS from Drosophila melanogaster is the only available structure of the full‐length enzyme. Here we describe a cloning, overexpression, purification and preliminary crystallographic analysis of a full‐length CBS from Apis mellifera (AmCBS) which maintains 51 and 46% sequence identity with its Drosophila and human homologs, respectively. The AmCBS yielded crystals belonging to space group P212121, with unit‐cell parameters a = 85.90, b = 95.87, c = 180.33 Å. Diffraction data were collected to a resolution of 3.0 Å. The crystal structure contained two molecules in the asymmetric unit which presumably correspond to the dimeric species observed in solution.  相似文献   

20.
Crystal structure of human pyridoxal kinase   总被引:1,自引:0,他引:1  
Pyridoxal kinase, a member of the ribokinase superfamily, catalyzes the ATP-dependent phosphorylation reaction of vitamin B6 and is an essential enzyme in the formation of pyridoxal-5'-phosphate, a key cofactor for over 100 enzymes. Pyridoxal kinase is thus regarded as a potential target for pharmacological agents. In this paper, we report the 2.8 angstroms crystal structure of human pyridoxal kinase (HPLK) expressed in Escherichia coli. The diffraction data revealed unexpected merohedral perfect twinning along the crystallographic c axis. Taking perfect twinning into account, the structure in dimeric form was well refined according to the CNS program. Structure comparison reveals that the key 12-residue peptide over the active site in HPLK is a beta-strand/loop/beta-strand flap, while the corresponding peptide in sheep brain enzyme adopts a loop conformation. Moreover, HPLK possesses a more hydrophobic ATP-binding pocket. This structure will facilitate further biochemical studies and structure-based design of drugs related to pyridoxal kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号