首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prion diseases are characterized by the deposition of PrP(Sc), an abnormal form of the cellular prion protein PrP(C). A growing body of evidence suggests that antibodies to PrP(C) can antagonize deposition of PrP(Sc). However, host tolerance hampers the induction of immune responses to PrP(C), and cross-linking of PrP(C) by bivalent anti-PrP antibodies is neurotoxic. In order to obviate these problems, we explored the antiprion potential of recombinant single-chain antibody (scFv) fragments. scFv fragments derived from monoclonal anti-PrP antibody 6H4, flagged with c-myc and His6 tags, were correctly processed and secreted by mammalian RD-4 rhabdomyosarcoma cells. When cocultured with cells secreting anti-PrP scFv, chronically prion-infected neuroblastoma cells ceased to produce PrP(Sc), even if antibody-producing cells were physically separated from target cells in transwell cultures. Expression of scFv with irrelevant specificity, or of similarly tagged molecules, was not curative. Therefore, eukaryotically expressed scFv exerts a paracrine antiprion activity. The effector functions encoded by immunoglobulin constant domains are unnecessary for this effect. Because of their small size and their monovalent binding, scFv fragments may represent candidates for gene transfer-based immunotherapy of prion diseases.  相似文献   

2.
Prion diseases are fatal neurodegenerative disorders caused by proteinaceous infectious pathogens termed prions (PrP(Sc)). To date, there is no prophylaxis or therapy available for these transmissible encephalopathies. Passive immunization with monclonal antibodies recognizing the normal host-encoded prion protein (PrP(C)) has been reported to abolish PrP(Sc) infectivity and to delay onset of disease. Because of established immunologic tolerance against the widely expressed PrP(C), active immunization appears to be difficult to achieve. To overcome this limitation, papillomavirus-like particles were generated that display a nine amino acid B-cell epitope, DWEDRYYRE, of the murine/rat prion protein in an immunogenic capsid surface loop, by insertion into the L1 major capsid protein of bovine papillomavirus type 1. The PrP peptide was selected on the basis of its previously suggested central role in prion pathogenesis. Immunization with PrP-virus-like particles induced high-titer antibodies to PrP in rabbit and in rat, without inducing overt adverse effects. As determined by peptide-specific ELISA, rabbit immune sera recognized the inserted murine/rat epitope and also cross-reacted with the homologous rabbit/human epitope differing in one amino acid residue. In contrast, rat immune sera recognized the murine/rat peptide only. Sera of both species reacted with PrP(C) in its native conformation in mouse brain and on rat pheochromocytoma cells, as determined by immunoprecipitation and fluorescence-activated cell sorting analysis. Importantly, rabbit anti-PrP serum contained high-affinity antibody that inhibited de novo synthesis of PrP(Sc) in prion-infected cells. If also effective in vivo, PrP-virus-like particle vaccination opens a unique possibility for immunologic prevention of currently fatal and incurable prion-mediated diseases.  相似文献   

3.
Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrP(Sc); PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrP(C)) to PrP(Sc) and the subsequent conversion of PrP(C) to PrP(Sc). We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrP(C) and PrP(Sc). Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrP(Sc) state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrP(Sc) and interfered with the conversion of endogenous MoPrP(C). The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrP(Sc). Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrP(C) reduced the accumulation of PrP(Sc) after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrP(C) plays a key role in conversion after binding to MoPrP(Sc).  相似文献   

4.
Prion diseases are neurodegenerative infectious disorders for which no prophylactic regimens are known. In order to induce antibodies/auto-antibodies directed against surface-located PrP(c), we used a covalently linked dimer of mouse prion protein expressed recombinantly in Escherichia coli. Employing dimeric PrP as an immunogen we were able to effectively overcome autotolerance against murine PrP in PrP wild-type mice without inducing obvious side effects. Treatment of prion-infected mouse cells with polyclonal anti-PrP antibodies generated in rabbit or auto-antibodies produced in mice significantly inhibited endogenous PrP(Sc) synthesis. We show that polyclonal antibodies are binding to surface-located PrP(c), thereby interfering with prion biogenesis. This effect is much more pronounced in the presence of full IgG molecules, which, unlike Fab fragments, seem to induce a significant cross-linking of surface PrP. In addition, we found immune responses against different epitopes when comparing antibodies induced in rabbits and PrP wild-type mice. Only in the auto-antibody situation in mice an immune reaction against a region of PrP is found that was reported to be involved in the PrP(Sc) conversion process. Our data point to the possibility of developing means for an active immunoprophylaxis against prion diseases.  相似文献   

5.
During prion diseases the normal prion protein PrP(C) is refolded into an abnormal conformer PrP(Sc). We have studied the PrP(Sc) inhibiting activity of a library of synthetic heparan mimetic (HM) biopolymers. HMs are chemically derived dextrans obtained by successive substitutions with carboxymethyl, benzylamide, and sulfate groups on glucose residues. Some HMs eliminated PrP(Sc) from prion-infected cells after a 5 day course at 100 ng/ml and were 15 x potent than pentosan sulfate in this system. The anti-PrP(Sc) activity of HMs correlated with the degree of sulfation but was increased by benzylamidation. HMs did not reduce the synthesis of PrP(C) nor its attachment to lipid rafts, but instead blocked its conversion into PrP(Sc). The anti-PrP(Sc) HMs also prevented the uptake of prion rods by cultured cells. HMs may thus block the interaction of PrP(Sc) with a putative cellular receptor, possibly heparan sulfate. HMs provide an attractive chemical approach for the synthesis of TSE therapeutic and prophylactic reagents.  相似文献   

6.
The molecular basis for neuronal death in prion disease is not established, but putative pathogenic roles for both disease-related prion protein (PrP(Sc)) and accumulated cytosolic PrP(C) have been proposed. Here we report that only prion-infected neuronal cells become apoptotic after mild inhibition of the proteasome, and this is strictly dependent upon sustained propagation of PrP(Sc). Whereas cells overexpressing PrP(C) developed cytosolic PrP(C) aggregates, this did not cause cell death. In contrast, only in prion-infected cells, mild proteasome impairment resulted in the formation of large cytosolic perinuclear aggresomes that contained PrP(Sc), heat shock chaperone 70, ubiquitin, proteasome subunits, and vimentin. Similar structures were found in the brains of prion-infected mice. PrP(Sc) aggresome formation was directly associated with activation of caspase 3 and 8, resulting in apoptosis. These data suggest that neuronal propagation of prions invokes a neurotoxic mechanism involving intracellular formation of PrP(Sc) aggresomes. This, in turn, triggers caspase-dependent apoptosis and further implicates proteasome dysfunction in the pathogenesis of prion diseases.  相似文献   

7.
Prion diseases are transmissible neurodegenerative disorders affecting humans and animals for which no therapeutic or prophylactic regimens exist. During the last three years several studies have shown that anti-PrP monoclonal antibodies (mAbs) can antagonize prion propagation in vitro and in vivo, but the mechanisms of inhibition are not known so far. To identify the most powerful mAbs and characterize more precisely the therapeutic effect of anti-PrP antibodies, we have screened 145 different mAbs produced in our laboratory for their capacity to cure cells constitutively expressing PrPSc. Our results confirm for a very large series of antibodies that mAbs recognizing cell-surface native PrPc can efficiently clean and definitively cure infected cells. Antibodies having a cleaning effect are directed against linear epitopes located in at least four different regions of PrP, suggesting an epitope-independent inhibition mechanism. The consequence of antibody binding is the sequestration of PrPc at the cell surface, an increase of PrPc levels recovered in cell culture medium, and an internalization of antibodies. Taken together these data suggest that the cleaning process is more likely due to a global effect on the PrP trafficking and/or transconformation process. Two antibodies, Sha31 and BAR236, show an IC50 of 0.6 nM, thus appearing 10-fold more efficient than previous antibodies described in the literature. Finally, five co-treatments were also tested, and only one of them, described previously (SAF34 + SAF61), lowered PrPSc levels in the cells synergistically.  相似文献   

8.
The main step in the pathogenesis of transmissible spongiform encephalopathies (TSE) is the conformational change of the normal cellular prion protein (PrP(C)) into the abnormal isoform, named prion (PrP(Sc)). Since PrP is a highly conserved protein, the production of monoclonal antibodies (mAbs) of high specificity and affinity to PrP is a difficult task. In the present study we show that it is possible to overcome the unresponsiveness of the immune system by immunizing wild-type BALB/c mice with a 13 amino acid PrP peptide from the C-terminal part of PrP, bound to the keyhole limpet hemocyanin (KLH). Immunization induced predominantly anti-PrP(Sc) humoral immune response. Furthermore, we were able to obtain a panel of mAbs of IgG class specific for different non-self-conformations of PrP, with anti-PrP(Sc)-specific mAbs being the most abundant.  相似文献   

9.
We prepared β-sheet-rich recombinant full-length prion protein (β-form PrP) (Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R., and Collinge, J. (1999) Science 283, 1935-1937). Using this β-form PrP and a human single chain Fv-displaying phage library, we have established a human IgG1 antibody specific to β-form but not α-form PrP, PRB7 IgG. When prion-infected ScN2a cells were cultured with PRB7 IgG, they generated and accumulated PRB7-binding granules in the cytoplasm with time, consequently becoming apoptotic cells bearing very large PRB7-bound aggregates. The SAF32 antibody recognizing the N-terminal octarepeat region of full-length PrP stained distinct granules in these cells as determined by confocal laser microscopy observation. When the accumulation of proteinase K-resistant PrP was examined in prion-infected ScN2a cells cultured in the presence of PRB7 IgG or SAF32, it was strongly inhibited by SAF32 but not at all by PRB7 IgG. Thus, we demonstrated direct evidence of the generation and accumulation of β-sheet-rich PrP in ScN2a cells de novo. These results suggest first that PRB7-bound PrP is not responsible for the accumulation of β-form PrP aggregates, which are rather an end product resulting in the triggering of apoptotic cell death, and second that SAF32-bound PrP lacking the PRB7-recognizing β-form may represent so-called PrP(Sc) with prion propagation activity. PRB7 is the first human antibody specific to β-form PrP and has become a powerful tool for the characterization of the biochemical nature of prion and its pathology.  相似文献   

10.
11.
Summary 1. Vaccination-induced anti-prion protein antibodies are presently regarded as a promising approach toward treatment of prion diseases. Here, we investigated the ability of five peptides corresponding to three different regions of the bovine prion protein (PrP) to elicit antibodies interfering with PrPSc propagation in prion-infected cells. 2. Rabbits were immunized with free nonconjugated peptides. Obtained immune sera were tested in enzyme-linked immunosorbent assay (ELISA) and immunoblot for their binding to recombinant PrP and cell-derived pathogenic isoform (PrPSc) and normal prion protein (PrPc), respectively. Sera positive in all tests were chosen for PrPSc inhibition studies in cell culture. 3. All peptides induced anti-peptide antibodies, most of them reacting with recombinant PrP. Moreover, addition of the serum specific to peptide 95–123 led to a transient reduction of PrPSc levels in persistently prion-infected cells. 4. Thus, anti-PrP antibodies interfering with PrPSc propagation were induced with a prion protein peptide nonconjugated to a protein carrier. These results point to the potential application of the nonconjugated peptide 95–123 for the treatment of prion diseases.  相似文献   

12.
AIMS: The purpose of this study was to develop an effective method for detecting prion (PrP) antigenic determinants remaining in bovine meat and bone meal (MBM) using pressurized fluid extraction (PSE) equipment and flow microbead immunoassay (FMI). METHODS AND RESULTS: Using the FMI, bovine recombinant PrP could be determined quantitatively in the 7 pmol-7 nmol range using anti-PrP peptide polyclonal antibody-coupled microbeads and anti-PrP monoclonal antibody (SAF61) as a detection antibody. PSE extraction at 120 degrees C for 5 min under high pressure was most effective for eluting PrP determinants from bovine MBMs. The FMI was capable of detecting PrP determinants in bovine MBM extracts with high specificity and indicated that the MBMs contained high levels of PrP determinants. This assay was also applied to the detection of PrP(Sc) determinants in bovine MBM spiked with a scrapie-infected brain at a weight ratio of 50 : 1. CONCLUSIONS: These data indicate that this assay was effective for the specific detection of PrP determinants contained in bovine MBM extracts. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report detailing the detection of PrP determinants in bovine MBM. The assay could be applied to securing the safety of bovine MBM.  相似文献   

13.
The pathological prion protein PrP(Sc) is the only known component of the infectious prion. In cells infected with prions, PrP(Sc) is formed posttranslationally by the refolding of the benign cell surface glycoprotein PrP(C) into an aberrant conformation. The two PrP isoforms possess very different properties, as PrP(Sc) has a protease-resistant core, forms very large amyloidic aggregates in detergents, and is only weakly immunoreactive in its native form. We now show that prion-infected rodent brains and cultured cells contain previously unrecognized protease-sensitive PrP(Sc) varieties. In both ionic (Sarkosyl) and nonionic (n-octyl beta-D-glucopyranoside) detergents, the novel protease-sensitive PrP(Sc) species formed aggregates as small as 600 kDa, as measured by gel filtration. The denaturation dependence of PrP(Sc) immunoreactivity correlated with the size of the aggregate. The small PrP(Sc) aggregates described here are consistent with the previous demonstration of scrapie infectivity in brain fractions with a sedimentation coefficient as small as 40 S [Prusiner et al. (1980) J. Neurochem. 35, 574-582]. Our results demonstrate for the first time that prion-infected tissues contain protease-sensitive PrP(Sc) molecules that form low MW aggregates. Whether these new PrP(Sc) species play a role in the biogenesis or the pathogenesis of prions remains to be established.  相似文献   

14.
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.  相似文献   

15.
16.
Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrP(Sc), have much higher beta-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrP9Sc) is poorly understood. To date, it has been impossible to elicit antibodies to native PrP(Sc) that are capable of recognizing PrP(Sc) without denaturation, even in Pm-P(o/o) mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrP(Sc) can be produced by immunization of Pm-P(o/o) mice with partially purified PrPc and PrP(Sc) adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrP(Sc) was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrP(c) or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrP(Sc) elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.  相似文献   

17.
The conversion of the cellular prion protein (PrP(c)) into pathologic PrP(Sc) and the accumulation of aggregated PrP(Sc) are hallmarks of prion diseases. A variety of experimental approaches to interfere with prion conversion have been reported. Our interest was whether interference with intracellular signaling events has an impact on this conversion process. We screened approximately 50 prototype inhibitors of specific signaling pathways in prion-infected cells for their capacity to affect prion conversion. The tyrosine kinase inhibitor STI571 was highly effective against PrP(Sc) propagation, with an IC(50) of < or =1 microM. STI571 cleared prion-infected cells in a time- and dose-dependent manner from PrP(Sc) without influencing biogenesis, localization, or biochemical features of PrP(c). Interestingly, this compound did not interfere with the de novo formation of PrP(Sc) but activated the lysosomal degradation of pre-existing PrP(Sc), lowering the half-life of PrP(Sc) from > or =24 h to <9 h. Our data indicate that among the kinases known to be inhibited by STI571, c-Abl is likely responsible for the observed anti-prion effect. Taken together, we demonstrate that treatment with STI571 strongly activates the lysosomal degradation of PrP(Sc) and that substances specifically interfering with cellular signaling pathways might represent a novel class of anti-prion compounds.  相似文献   

18.
Prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into a disease related, protease-resistant isoform (PrP(Sc)). In these studies, a cell painting technique was used to introduce PrP(C) to prion-infected neuronal cell lines (ScGT1, ScN2a, or SMB cells). The addition of PrP(C) resulted in increased PrP(Sc) formation that was preceded by an increase in the cholesterol content of cell membranes and increased activation of cytoplasmic phospholipase A(2) (cPLA(2)). In contrast, although PrP(C) lacking one of the two acyl chains from its glycosylphosphatidylinositol (GPI) anchor (PrP(C)-G-lyso-PI) bound readily to cells, it did not alter the amount of cholesterol in cell membranes, was not found within detergent-resistant membranes (lipid rafts), and did not activate cPLA(2). It remained within cells for longer than PrP(C) with a conventional GPI anchor and was not converted to PrP(Sc). Moreover, the addition of high amounts of PrP(C)-G-lyso-PI displaced cPLA(2) from PrP(Sc)-containing lipid rafts, reduced the activation of cPLA(2), and reduced PrP(Sc) formation in all three cell lines. In addition, ScGT1 cells treated with PrP(C)-G-lyso-PI did not transmit infection following intracerebral injection to mice. We propose that that the chemical composition of the GPI anchor attached to PrP(C) modified the local membrane microenvironments that control cell signaling, the fate of PrP(C), and hence PrP(Sc) formation. In addition, our observations raise the possibility that pharmacological modification of GPI anchors might constitute a novel therapeutic approach to prion diseases.  相似文献   

19.
The conversion of the normal cellular prion protein, PrP(C), into the protease-resistant, scrapie PrP(Sc) aggregate is the cause of prion diseases. We developed a novel enzyme-linked immunosorbent assay (ELISA) that is specific for PrP aggregate by screening 30 anti-PrP monoclonal antibodies (MAbs) for their ability to react with recombinant mouse, ovine, bovine, or human PrP dimers. One MAb that reacts with all four recombinant PrP dimers also reacts with PrP(Sc) aggregates in ME7-, 139A-, or 22L-infected mouse brains. The PrP(Sc) aggregate is proteinase K resistant, has a mass of 2,000 kDa or more, and is present at a time when no protease-resistant PrP is detectable. This simple and sensitive assay provides the basis for the development of a diagnostic test for prion diseases in other species. Finally, the principle of the aggregate-specific ELISA we have developed may be applicable to other diseases caused by abnormal protein aggregation, such as Alzheimer's disease or Parkinson's disease.  相似文献   

20.
Prion diseases are fatal and transmissible neurodegenerative disorders characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrP(C)) denoted PrP(Sc). To identify intracellular organelles involved in PrP(Sc) formation, we studied the role of the Ras-related GTP-binding proteins Rab4 and Rab6a in intracellular trafficking of the prion protein and production of PrP(Sc). When a dominant-negative Rab4 mutant or a constitutively active GTP-bound Rab6a protein was overexpressed in prion-infected neuroblastoma N2a cells, there was a marked increase of PrP(Sc) formation. By immunofluorescence and cell fractionation studies, we have shown that expression of Rab6a-GTP delocalizes PrP within intracellular compartments, leading to an accumulation in the endoplasmic reticulum. These results suggest that prion protein can be subjected to retrograde transport toward the endoplasmic reticulum and that this compartment may play a significant role in PrP(Sc) conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号