首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

2.
Outer sulcus epithelial cells were recently found to actively reabsorb cations from the cochlear luminal fluid, endolymph, via nonselective cation channels in the apical membrane. Here we determined the transport properties of the basolateral membrane with the whole-cell patch clamp technique; the apical membrane contributed insignificantly to the recordings. Outer sulcus epithelial cells exhibited both outward and inward currents and had a resting membrane potential of −90.4 ± 0.7 mV (n= 78), close to the Nernst potential for K+ (−95 mV). The reversal potential depolarized by 54 mV for a tenfold increase in extracellular K+ concentration with a K+/Na+ permeability ratio of 36. The most frequently observed K+ current was voltage independent over a broad range of membrane potentials. The current was reduced by extracellular barium (10−5 to 10−3 m), amiloride (0.5 mm), quinine (1 mm), lidocaine (5 mm) and ouabain (1 mm). On the other hand, TEA (20 mm), charybdotoxin (100 nm), apamin (100 nm), glibenclamide (10 μm), 4-aminopyridine (1 mm) and gadolinium (1 mm) had no significant effect. These data suggest that the large K+ conductance, in concert with the Na+,K+-ATPase, of the basolateral membrane of outer sulcus cells provides the driving force for cation entry across the apical membrane, thereby energizing vectorial cation absorption by this epithelium and contributing to the homeostasis of endolymph.  相似文献   

3.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

4.
Nystatin perforated-patch clamp and single-channel recording methods were used to characterize macroscopic and single-channel K+ currents and the effects of angiotensin II (AngII) in cultured rat adrenal glomerulosa cells. Two basic patterns of macroscopic current-voltage relationships were observed: type 1 exhibited a rapidly activating, noninactivating, voltage-dependent outward current and type 2 exhibited an inactivating voltage-dependent outward current attributed to charybdotoxin sensitive Ca++-dependent K+ channels. Most cells exhibited the type 1 pattern and experiments focused on this cell type. Cell-attached and inside-out patches were dominated by a single K+ channel class which exhibited an outward conductance of 12 pS (20 mm K+ pipette in cell-attached and inside-out configurations, 145 mm K+ in), a mean open time of 2 msec, and a weakly voltage-dependent low open probability that increased with depolarization. Channel open probability was reversibly inhibited by bath stimulation with AngII. At the macroscopic level, type 1 cell macroscopic K+ currents appeared comprised of two components: a weakly voltage-dependent current controlling the resting membrane potential (−85 mV) which appeared mediated by the 12 pS K+ channel and a rapidly activating, noninactivating voltage-dependent current activated above −50 mV. The presence of the second voltage-dependent K+ channel class was suggested by the effects of AngII, the blocking effects of quinidine and Cs+, and the properties of the weakly voltage-dependent K+ channel described. The K+ selectivity of the macroscopic current was demonstrated by the dependence of current reversal potentials on the K+ equilibrium potential and by the effects of K+ channel blockers, Cs+ and quinidine. AngII (10 pm to 1 nm) reversibly inhibited macroscopic K+ currents and this effect was blocked by the AT1 receptor antagonist losartin. Received: 6 August 1996/Revised: 15 November 1996  相似文献   

5.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between −60 and −40 mV with a potential of half-maximal activation, E50, at −47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between −60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at −40 mV. The time constant of deactivation was 126 msec at −80 mV and 16.9 msec at −110 mV. In symmetrical 105 mm K+, the single-channel conductance (γ) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13–15°C. In Na+-rich solution with 2.5 mm extracellular K+γ was 7 pS and the reversal potential was negative to −80 mV, indicating a high selectivity for K+ over Na+. γ depended on extracellular K+ concentration (K D = 19.6 mm) and temperature (Q 10= 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel current amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mm. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50= 6.8 nm) and mast cell degranulating peptide (MCDP, IC50= 41.9 nm). In Ringer solution the membrane potential of macroscopic I-channel patches was about −65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential. Received: 2 June 1995/Revised: 13 October 1995  相似文献   

6.
The gating and conduction properties of a channel activated by intracellular Na+ were studied by recording unitary currents in inside-out patches excised from lobster olfactory receptor neurons. Channel openings to a single conductance level of 104 pS occurred in bursts. The open probability of the channel increased with increasing concentrations of Na+. At 210 mm Na+, membrane depolarization increased the open probability e-fold per 36.6 mV. The distribution of channel open times could be fit by a single exponential with a time constant of 4.09 msec at −60 mV and 90 mm Na+. The open time constant was not affected by the concentration of Na+, but was increased by membrane depolarization. At 180 mm Na+ and −60 mV, the distribution of channel closed times could be fit by the sum of four exponentials with time constants of 0.20, 1.46, 8.92 and 69.9 msec, respectively. The three longer time constants decreased, while the shortest time constant did not vary with the concentration of Na+. Membrane depolarization decreased all four closed time constants. Burst duration was unaffected by the concentration of Na+, but was increased by membrane depolarization. Permeability for monovalent cations relative to that of Na+ (P X /P Na ), calculated from the reversal potential, was: Li+ (1.11) > Na+ (1.0) > K+ (0.54) > Rb+ (0.36) > Cs+ (0.20). Extracellular divalent cations (10 mm) blocked the inward Na+ current at −60 mV according to the following sequence: Mn2+ > Ca2+ > Sr2+ > Mg2+ > Ba2+. Relative permeabilities for divalent cations (P Y /P Na ) were Ca2+ (39.0) > Mg2+ (34.1) > Mn2+ (15.5) > Ba2+ (13.8) > Na+ (1.0). Both the reversal potential and the conductance determined in divalent cation-free mixtures of Na+ and Cs+ or Li+ were monotonic functions of the mole fraction, suggesting that the channel is a single-ion pore that behaves as a multi-ion pore when the current is carried exclusively by divalent cations. The properties of the channel are consistent with the channel playing a role in odor activation of these primary receptor neurons. Received: 17 September 1996/Revised: 15 November 1996  相似文献   

7.
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 μm) of adenosine 3′, 5′-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mm. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to 0 mV. When the external NaCl concentration was maintained at 150 mm and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P Cl/P Na≈ 0. However, at low external NaCl concentrations (≤100 mm) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K ms in the range of 100–150 mm and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels. Received: 7 November 1996/Revised: 24 March 1997  相似文献   

8.
Primary cultures containing a high percentage of lactotrophs were obtained by dissociating the pituitary of rats following 14–18 days of lactation. Lactotrophs with a distinctive appearance were recorded after 1–35 days in vitro and identified by immunocytochemical staining for prolactin. Whole-cell voltage clamp measurements in isotonic KCl solution from a holding potential of −40 mV revealed the presence of inward-rectifying K currents with a time-dependent, Na+-independent inactivation at potentials negative to −60 mV. The time for complete inactivation was strikingly different between lactotrophs, varying between 1 sec and more than 5 sec at −120 mV, and was not related to time in culture. The reversal potential shifted 59 mV (25°C) for a tenfold change in external K+ concentration, demonstrating the selectivity of the channel for K+ over Na+. The inward-rectifying K current was blocked by 5 mm Ba2+ and partially blocked by 10 mm TEA. Chloramine-T (1 and 2 mm) produced a total block of the inward-rectifying K current in lactotrophs. Thyrotropin-releasing hormone (500 nm) significantly reduced the inward-rectifying K current in about half of the lactotrophs. This current is similar to the inward-rectifying K current previously characterized in clonal somatomammotrophic pituitary cells (GH3B6). The variability of the rate of inactivation of this current in lactotrophs and its responsiveness to TRH is discussed. Received: 28 September 1995/Revised: 11 December 1995  相似文献   

9.
10.
A new type of nonselective cation channel was identified and characterized in pheochromocytoma (PC12) cells using inside-out and cell-attached patch-clamp recordings. The channel shows a large unitary conductance (274 pS in symmetric 145 mm K+) and selectivity for Na+≈ K+ > Li+, and is practically impermeable to Cl. The channel activity-voltage relationship is bell-shaped, showing maximal activation at ≈−10 mV. The overall activity of this channel is unmodified by [Na+] ic , or [Ca++] ic . However, increases in [Ca++] ic lead to a decrease in the unitary current amplitude. In addition, overall activity is mildly increased when suction is applied to the back of the patch pipette. Together, these characteristics distinguish the present channel from all other large conductance nonselective cation channels reported so far in a variety of preparations. The frequency of appearance of this channel type is similar in undifferentiated and NGF-treated PC12 cells (≈8–27% of patches). The combination of large conductance, permeability to Na+, and existence of conducting states at negative potentials, may provide a significant pathway for inward current and depolarization in PC12 cells. Received: 14 February 1997/Revised: 28 July 1997  相似文献   

11.
The relationships between currents generated by the rabbit Na+/glucose cotransporter (SGLT1) and the fluxes of Na+ and sugar were investigated using Xenopus laevis oocytes expressing SGLT1. In individual voltage-clamped oocytes we measured: (i) the current evoked by 10 mmαMG and the 22Na+ uptake at 10 mm Na+; (ii) the currents evoked by 50 to 500 μm [14C]αMG and the [14C]αMG uptakes at 100 mm Na+; and (iii) phlorizin-sensitive leak currents in the absence of sugar and 22Na+ uptakes at 10 mm Na+. We demonstrate that the SGLT1 leak currents are Na+ currents, and that the sugar-evoked currents are directly proportional to both αMG and Na+ uptakes. The Na+/αMG coupling coefficients were estimated to be 1.6 at −70 mV and 1.9 at −110 mV. This suggests that the rabbit SGLT1 Na+/αMG stoichiometry for sugar uptake is 2 under fully saturating, zero-trans conditions. Coupling coefficients of less than 2 are expected under nonsaturating conditions due to uncoupled Na+ fluxes (slippage). The similarity between the Na+ Hill coefficients and the coupling coefficients suggests strong cooperativity between the two Na+ binding sites. Received: 6 October 1997/Revised: 5 December 1997  相似文献   

12.
Plant growth requires a continuous supply of intracellular solutes in order to drive cell elongation. Ion fluxes through the plasma membrane provide a substantial portion of the required solutes. Here, patch clamp techniques have been used to investigate the electrical properties of the plasma membrane in protoplasts from the rapid growing tip of maize coleoptiles. Inward currents have been measured in the whole cell configuration from protoplasts of the outer epidermis and from the cortex. These currents are essentially mediated by K+ channels with a unitary conductance of about 12 pS. The activity of these channels was stimulated by negative membrane voltage and inhibited by extracellular Ca2+ and/or tetraethylammonium-CI (TEA). The kinetics of voltage- and Ca2+-gating of these channels have been determined experimentally in some detail (steady-state and relaxation kinetics). Various models have been tested for their ability to describe these experimental data in straightforward terms of mass action. As a first approach, the most appropriate model turned out to consist of an active state which can equilibrate with two inactive states via independent first order reactions: a fast inactivation/activation by Ca2+-binding and -release, respectively (rate constants >>103 sec−1) and a slower inactivation/activation by positive/negative voltage, respectively (voltage-dependent rate constants in the range of 103 sec−1). With 10 mm K+ and 1 mm Ca2+ in the external solution, intact coleoptile cells have a membrane voltage (V) of −105 ± 7 mV. At this V, the density and open probability of the inward-rectifying channels is sufficient to mediate K+ uptake required for cell elongation. Extracellular TEA or Ca2+, which inhibit the K+ inward conductance, also inhibit elongation of auxin-depleted coleoptile segments in acidic solution. The comparable effects of Ca2+ and TEA on both processes and the similar Ca2+ concentration required for half maximal inhibition of growth (4.3 mm Ca2+) and for conductance (1.2 mm Ca2+) suggest that K+ uptake through the inward rectifier provides essential amounts of solute for osmotic driven elongation of maize coleoptiles. Received: 6 June 1995/Revised: 12 September 1995  相似文献   

13.
The hyperpolarization of the electrical plasma membrane potential difference has been identified as an early response of plant cells to various signals including fungal elicitors. The hyperpolarization-activated influx of Ca2+ into tomato cells was examined by the application of conventional patch clamp techniques. In both whole cell and single-channel recordings, clamped membrane voltages more negative than −120 mV resulted in time- and voltage-dependent current activation. Single-channel currents saturated with increasing activities of Ca2+ and Ba2+ from 3 to 26 mm and the single channel conductance increased from 4 pS to 11 pS in the presence of 20 mm Ca2+ or Ba2+, respectively. These channels were 20–25 and 10–13 times more permeable to Ca2+ than to K+ and to Cl, respectively. Channel currents were strongly inhibited by 10 μm lanthanum and 50% inhibited by 100 μm nifedipine. This evidence suggests that hyperpolarization-activated Ca2+-permeable channels provide a mechanism for the influx of Ca2+ into tomato cells. Received: 13 February 1996/Revised: 12 August 1996  相似文献   

14.
Mechanically Activated Currents in Chick Heart Cells   总被引:7,自引:0,他引:7  
As predicted from stretch-induced changes of rate and rhythm in the heart, acutely isolated embryonic chick heart cells exhibit whole-cell mechanosensitive currents. These currents were evoked by pressing on cells with a fire polished micropipette and measured through a perforated patch using a second pipette. The currents were carried by Na+ and K+ but not Cl, and were independent of external Ca2+. The currents had linear I/V curves reversing at −16 mV and were completely blocked by Gd3+≥ 30 μm and Grammostola spatulata venom at a dilution of 1:1000. Approximately 20% of cells showed time dependent inactivation. In contrast to direct mechanical stimulation, hypotonic volume stress produced an increase in conductance for anions rather than cations—the two stimuli are not equivalent. The cells had two types of stretch-activated ion channels (SACs): a 21 pS nonspecific cation-selective reversing at −2 mV and a 90 pS K+ selective reversing at −70 mV in normal saline. The activity of SACs was strongly correlated with the presence of whole-cell currents. Both the whole-cell currents and SACs were blocked by Gd3+ and by Grammostola spatulata spider venom. Mechanical stimulation of spontaneously active cells increased the beating rate and this effect was blocked by Gd3+. We conclude that physiologically active mechanosensitive currents arise from stretch activated ion channels. Received: 8 April 1996/Revised: 8 August 1996  相似文献   

15.
We used whole-cell patch-clamp recording techniques to investigate G protein-activated currents in cultured rat retinal pigment epithelial (RPE) cells. Using 140 mm KCl intracellular and 130 mm NaCl extracellular solutions, rat RPE cells possessed both inward and outward K+ currents. Upon addition of the nonhydrolyzable guanine triphosphate analogue, guanosine-5′-O-(3-thiophosphate) (GTPγS, 0.1 mm), to the recording electrode, a nonspecific cation (NSC) current was elicited. The NSC current had a mean reversal potential of +5.7 mV in 130 mm extracellular NaCl with Cs+-aspartate in the pipette, and was not affected by alterations in the extracellular Ca2+ or Cl concentration. The GTPγS-activated current was found to be permeable to several monovalent cations (K+, Na+, choline, TRIS, and NMDG). Addition of fluoroaluminate, an activator of large molecular weight heterotrimeric GTP-binding proteins (G proteins), to the intracellular recording solution activated the NSC current. The G protein involved was pertussis toxin (PTX)-sensitive, since GTPγS failed to activate the NSC current in cells pretreated with PTX. Further investigation of second messenger molecules suggested that activation of the NSC current was not affected by alterations in intracellular Ca2+ or ATP. From these results, we conclude that a G protein-regulated NSC current is present in rat RPE cells. Activation of the NSC current may sufficiently depolarize RPE cells to activate outward K+ currents. This would provide a mechanism by which these cells could rid themselves of accumulated K+. Received: 25 January 1996/Revised: 24 April 1996  相似文献   

16.
17.
The resting potassium current (I KI ) in gerbil dissociated type I vestibular hair cells has been characterized under various ionic conditions in whole cell voltage-clamp. When all K+ in the patch electrode solution was replaced with Na+, (Na+) in or Cs+, (Cs+) in , large inward currents were evoked in response to voltage steps between −90 and −50 mV. Activation of these currents could be described by a Hodgkin-Huxley-type kinetic scheme, the order of best fit increasing with depolarization. Above ∼−40 mV currents became outward and inactivated with a monoexponential time course. Membrane resistance was inversely correlated with external K+ concentration. With (Na+) in , currents were eliminated when K+ was removed from the external solution or following extracellular perfusion of 4-aminopyridine, indicating that currents flowed through I KI channels. Also, reduction of K+ entry through manipulation of membrane potential reduced the magnitude of the outward current. Under symmetrical Cs+, 0 K+ conditions I KI is highly permeable to Cs+. However, inward currents were reduced when small amounts of external K+ were added. Higher concentrations of K+ resulted in larger currents indicating an anomalous mole fraction effect in mixtures of external Cs+ and K+. Received: 23 June 1999/Revised: 27 September 1999  相似文献   

18.
A large conductance, Ca2+-activated K+ channel of the BK type was examined in cultured pituitary melanotrophs obtained from adult male rats. In cell-attached recordings the slope conductance for the BK channel was ≈190 pS and the probability (P o ) of finding the channel in the open state at the resting membrane potential was low (<<0.1). Channels in inside-out patches and in symmetrical 150 mm K+ had a conductance of ≈260 pS. The lower conductance in the cell-attached recordings is provisionally attributed to an intracellular K+ concentration of ≈113 mm. The permeability sequence, relative to K+, was K+ > Rb+ (0.87) > NH+ 4 (0.17) > Cs+≥ Na+ (≤0.02). The slope conductance for Rb+ was much less than for K+. Neither Na+ nor Cs+ carried measurable currents and 150 mm internal Cs+ caused a flickery block of the channel. Internal tetraethylammonium ions (TEA+) produced a fast block for which the dissociation constant at 0 mV (K D (0 mV)) was 50 mm. The K D (0 mV) for external TEA+ was much lower, 0.25 mm, and the blocking reaction was slower as evidenced by flickery open channel currents. With both internal and external TEA+ the blocking reaction was bimolecular and weakly voltage dependent. External charybdotoxin (40 nm) caused a large and reversible decrease of P o . The P o was increased by depolarization and/or by increasing the concentration of internal Ca2+. In 0.1 μm Ca2+ the half-maximal P o occurred at ≈100 mV; increasing Ca2+ to 1 μm shifted the voltage for the half-maximal P o to −75 mV. The Ca2+ dependence of the gating was approximated by a fourth power relationship suggesting the presence of four Ca2+ binding sites on the BK channel. Received: 23 October/Revised: 15 December 1995  相似文献   

19.
Cl currents (I Cl) were measured in short fibers (1–2 mm) from the lumbricalis muscle of toads (Bufo arenarum) with two microelectrodes (15°C). Initially the fibers were equilibrated in a high K+-containing solution: (mm) K2SO4 68; Na2SO4 20; KCl 60; CaSO4 8; MgSO4 1; HEPES 2.5. Constant pulses were applied when all the external K+ was replaced by Cs+: Cs2SO4 68; Na2SO4 20; CsCl 60; CaSO4 8; HEPES 2.5 (pH 7.5). Under these conditions about 80–90% of the current is carried by Cl. The current-voltage relation is almost linear implying constant conductance and hence voltage-independent permeability. The voltage dependence of the net Cl current could be fitted by constant field equation with a P Cl of 3.3 × 10−6 cm/sec. In a separate group of experiments a two-pulse technique was used to estimate the availability and the inactivation of the initial I Cl during a test pulse. After returning the potential to the holding potential for various times, test pulses of the same amplitude and duration of the prepulses were applied. The initial current during the test pulse was 70% of the initial current during the prepulse and the recovery was complete in less than 300 msec with a linear relationship between the current during the test pulse and the amplitude of the preceding prepulse. When the test pulses were preceded by a positive prepulse, the initial current for any given test pulse was larger than with a negative prepulse. If we assumed that the initial current during the test pulse is a measure of the number of channels open at the end of the prepulse, these results suggest that hyperpolarizing pulses inactivate and depolarizing prepulses activate the I Cl. Received: 31 March 1995/Revised: 27 October 1995  相似文献   

20.
The effects of angiotensin II (100 nm) on the electrical membrane properties of zona fasciculata cells isolated from calf adrenal gland were studied using the whole cell patch recording method. In current-clamp condition, angiotension II induced a biphasic membrane response which began by a transient hyperpolarization followed by a depolarization more positive than the control resting potential. These effects were abolished by Losartan (10−5 m), an antagonist of angiotensin receptors of type 1. The angiotensin II-induced transient hyperpolarization was characterized in voltage-clamp condition from a holding potential of −10 mV. Using either the perforated or the standard recording method, a transient outward current accompanied by an increase of the membrane conductance was observed in response to the hormonal stimulation. This outward current consisted of an initial fast peak followed by an oscillating or a slowly decaying plateau current. In Cl-free solution, the outward current reversed at −78.5 mV, a value close to E K. It was blocked by external TEA (20 mm) and by apamin (50 nm). In K+-free solution, the transient outward current, sensitive to Cl channel blocker DPC (400 μm), reversed at −52 mV, a more positive potential than E Cl. Its magnitude changed in the same direction as the driving force for Cl. The hormone-induced transient outward current was never observed when EGTA (5 mm) was added to the pipette solution. The plateau current was suppressed in nominally Ca2+-free solution (47% of cells) and was reversibly blocked by Cd2+ (300 μm) but not by nisoldipine (0.5–1 μm) which inhibited voltage-gated Ca2+ currents identified in this cell type. The present experiments show that the transient hyperpolarization induced by angiotensin II is due to Ca2+-dependent K+ and Cl currents. These two membrane currents are co-activated in response to an internal increase of [Ca2+] i originating from intra- and extracellular stores. Received: 29 May 1997/Revised: 4 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号