首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary We describe the structure of a gene expressed in the salivary gland cells of the dipteranChironomus tentans and show that it encodes 1 of the approximately 15 secretory proteins exported by the gland cells. This sp115,140 gene consists of approximately 65 copies of a 42-bp sequence in a central uninterrupted core block, surrounded by short nonrepetitive regions. The repeats within the gene are highly similar to each other, but divergent repeats are present in a pattern which suggests that the repeat structure has been remodeled during evolution. The 42-bp repeat in the gene is a simple variant of the more complex repeat unit present in the Balbiani ring genes, encoding four of the other secretory proteins. The structure of the sp115,140 gene suggests that related repeat structures have evolved from a common origin and resulted in the set of genes whose secretory proteins interact in the assembly of the secreted protein fibers.  相似文献   

2.
The known Balbiani ring (BR) multigene family members in the dipteran Chironomus tentans encode salivary gland secretory proteins in the size range between 38 and 1,000 kDa. The proteins interact to form protein fibers used by the aquatic larvae to spin feeding and protective larval tubes or pupation tubes. Here, we describe a new BR multigene family member, the spl7 gene, which codes for an 89-amino-acid-long protein with a relative mobility of 17k. The gene has a high content of charged amino acid residues and consists of two structurally different halves. Five regularly spaced cysteine codons are present in the 5 half while the 3 half contains five proline codons. These two different halves exhibit similarities to the C and SR regions, respectively, which form the tandemly repeated units in the about 40-kb-long BR genes and which also, in different versions, are the building blocks of all genes in the BR multigene family.In this multigene family, encoding interacting structural proteins, the long BR genes with their 125–150 tandemly arranged repeat units as well as the short sp17 gene with its single-copy version of such a repeat unit, have therefore evolved from a common ancestor.Correspondence to: L. Wieslander  相似文献   

3.
Summary The large, repetitive Balbiani ring (BR) genes, BR 1, 2, and 6, inChironomus tentans originated from a short ancestral sequence and have all evolved according to analogous amplification schemes. We analyzed the structures of the BR-encoded secretory proteins and defined the parts that have been conserved during the evolutionary process. The BR products show striking similarities, with the BR 1 and BR 2 products being more similar to each other than to the BR 6 product. In the constant (C) region of the repeat units, 7 of the 30 amino acid residues are strictly conserved; 4 of these are the cysteine residues. The subrepeat (SR) regions of all the BR products are dominated by repeated tripeptide elements rich in proline and charged amino acid residues. Most of the amino acid replacements in both regions are conservative. Secondary structure predictions suggested that the C regions of the BR 1 and BR2 products have several elements of secondary structure: an -helix, a -strand, and one or two reverse turns, as in globular structures. The prediction for the C region of the BR 6 product is similar but lacks a -strand. The predictions for the intervening SR regions appear less conclusive, but are clearly different from those for the C regions, and suggest regular structures not differing in their conformational elements. The SR regions evolved from an ancestor sequence similar to the C region; thus, the BR products seem to represent an example of evolution from one structure to two differently folded products. It is proposed that the alignment and polymerization of the long BR proteins could be promoted by the repetitive structure of the molecules, due to the possibility of forming disulfide bridges between half-cystine residues and electrostatic interactions between the charged residues of the SR regions. The divergence among the BR products is discussed in relation to possible functional differences among the members of the BR gene family.  相似文献   

4.

Background

The polytene nuclei of the dipteran Chironomus tentans (Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes.

Results

The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150–250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster (D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations.

Conclusions

We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-819) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Summary The four Balbiani ring (BR) genes, BR1, BR2.1, BR2.2, and BR6 in the midge Chironomus tentans constitute a gene family encoding secretory proteins with molecular weights of approximately 106 daltons. The major part of each gene is known to consist of tandemly organized composite repeat units resulting in a hierarchic repeat arrangement.Here, we present the sequence organization of the 5 part of the BR2.2 and BR6 genes and describe the entire transcribed part of the two genes. As the BR1 and BR2.1 genes were also fully characterized recently, this allows the comparison of all genes in the BR gene family.All four genes share the same exon-intron structure and have evolved by gene duplications starting from a common ancestor, having the same overall organization as the BR genes of today.The genes encode proteins that have an approximately 10,000-amino acid residue extended central domain, flanked by a highly charged, 200-residue amino-terminal domain and a globular 110-residue carboxy-terminal domain. Exons 1–3 and the beginning of exon 4 encode the amino-terminal domain, which throughout contains many regions built from short repeats. These repeats are often degenerate as to repeat unit and sequence and are present in different numbers between the genes. In several instances these repeat structures, however, are conserved at the protein level where they form positively or negatively charged regions.Each BR gene has a 26–38-kb-long exon 4, which consists of an array of 125–150 repeat units and encodes the central domain. The number of repeat units appears to be largely preserved by selection and all repeat units in the array are very efficiently homogenized. Occasionally variant repeats have been introduced, presumably from another BR gene by gene conversion, and spread within the array.Introns 1–3 at the 5 end of the genes have diverged extensively in sequence and length between the genes. In contrast, intron 4 at the 3 end is virtually identical between three of the four genes, suggesting that gene conversion homogenizes the 3 ends of the genes, but not the 5 ends. Offprint requests to: L. Wieslander  相似文献   

7.
8.
Barley (Hordeum vulgare L.) is one of the most important large-genome cereals with extensive genetic resources available in the public sector. Studies of genome organization in barley have been limited primarily to genetic markers and sparse sequence data. Here we report sequence analysis of 417.5 kb DNA from four BAC clones from different genomic locations. Sequences were analyzed with respect to gene content, the arrangement of repetitive sequences and the relationship of gene density to recombination frequencies. Gene densities ranged from 1 gene per 12 kb to 1 gene per 103 kb with an average of 1 gene per 21 kb. In general, genes were organized into islands separated by large blocks of nested retrotransposons. Single genes in apparent isolation were also found. Genes occupied 11% of the total sequence, LTR retrotransposons and other repeated elements accounted for 51.9% and the remaining 37.1% could not be annotated. Electronic Publication  相似文献   

9.
10.
The cytokine receptor family consists of a growing number of structurally and evolutionarily related transmembrane receptors. CRFB4 and IFNAR are two of the most similar members of this family. They are encoded by two neighboring genes on both human chromosome 21 and murine chromosome 16. The sequence of the human CRFB4 gene was determined from the first exon to the last intron. The nature of the repetitive sequences present in the introns was analyzed and compared with those present in the human IFNAR gene. This analysis leads to considerations of the antiquity of the duplication that gave rise to both genes from a common ancestor. A pseudogene for USF has been identified in the IFNAR gene and a new definition for the repetitive sequence MER37 is proposed. The polymorphism associated with two CA repeats present in the CRFB4 gene is described.The nucleotide sequence reported in this paper has been deposited to GenBank with accession numbers U08988 and U12021 Correspondence to: G. Lutfalla  相似文献   

11.
S T Case  J R Bower 《Gene》1983,22(1):85-93
pCtBR2-1 is a recombinant plasmid with a 750-bp insert of Chironomus tentans genomic DNA. When pCtBR2-1 was hybridized in situ to salivary gland polytene chromosomes, it hybridized exclusively to Balbiani ring 2 (BR2), a giant chromosomal puff. It was also shown that the insert contained four tandemly repeated sequences that were delineated by HinfI sites which occurred every 190 bp. The purified insert reassociated to C. tentans DNA with a C0t1/2 = 0.48 indicating that the sequence was moderately repeated within the genome. Hybridization of radioactive pCtBR2-1 to nitrocellulose blots containing partial HinfI digests of genomic DNA revealed that the 190-bp repeats were organized into one or more blocks of 11 to 12 copies in tandem. Hybridization of the recombinant plasmid to limit digests of genomic DNA also demonstrated that repeated sequences in BR2 were not homogeneous. As much as 70% of BR2 appeared to be represented by a 26-kb HhaI-resistant core, while the remaining 30% may have HhaI sites at 190-bp intervals, similar to pCtBR2-1.  相似文献   

12.
The two giant secretory proteins, sp-Ia and sp-Ib, in salivary-gland cells of the larva of the fly Chironomus tentans, were isolated by preparative gel electrophoresis and characterized chemically. Their amino acid compositions are dominated by polar amino acids, with about 30% of basic amino acid residues. Crossed immunoelectrophoresis of sp-Ia and sp-Ib provided evidence that they share antigenic determinants. They also have major methionine-containing tryptic peptides in common. CNBr cleavage of sp-Ib gives a small number of low-Mr fragments, indicating that this protein has a repetitive structure.  相似文献   

13.
The 75S RNA originating in the large Balbiani rings 1 and 2 (BR1 and 2) was isolated and used for in vitro translation in the mRNA dependent reticulocyte lysate. Conditions (K+-concentration, temperature, time etc), were optimized for obtaining translation products of maximal size. Polypeptide chains up to about 500,000 D were obtained but no complete translation products. Tryptic fingerprints were performed on the in vitro products as well as on the secretory protein components nos. I and II+III labelled with 35S-methionine. There was a large degree of correspondence between the fingerprint of the in vitro product and that of component I but less to that of component II+III. The results suggest that 75S RNA with an origin in the BR1 and BR2 codes for the giant secretory protein component I.  相似文献   

14.
S S Dignam  S T Case 《Gene》1990,88(2):133-140
We have continued to map and identify genes encoding a family of secretory proteins. These proteins are synthesized in larval salivary glands of the midge, Chironomus tentans, and assemble in vivo into insoluble silk-like threads. The genes for several secretory proteins exist in Balbiani rings (BRs) on salivary-gland polytene chromosomes. A randomly primed cDNA clone, designated pCt185, hybridized in situ to BR3 and was shown on Northern blots to originate from a salivary gland-specific 6-kb poly(A) + RNA. The partial cDNA sequence contained 483 nucleotides including one open reading frame (ORF) encoding 160 amino acids (aa). A striking feature of the ORF was the periodic distribution of cysteine residues (Cys-X-Cys-X-Cys-X6-Cys) which occurred approximately every 22 aa. A cDNA-encoded 18-aa sequence was selected for chemical peptide synthesis. When affinity-purified antipeptide antibodies were incubated with a Western blot containing salivary-gland proteins they reacted specifically with a 185-kDa secretory protein (sp185). Developmental studies showed that sp185 and its mRNA were present in salivary glands throughout the fourth larval instar. Thus sp185 and a family of 1000-kDa secretory proteins are encoded by a class of genes that are expressed throughout the fourth instar. This contrasts with the developmentally regulated expression of the sp140 and sp195 genes whose expression is maximal during the prepupal stages of larval development.  相似文献   

15.
The secretory proteins of Chironomus tentans larvae form insoluble fibers that are spun into threads used to construct underwater feeding and pupation tubes. We began in vitro studies of the mechanism of assembly into fibers, the structure of the assembled proteins, and the contribution of individual proteins to the assembled structure. From measurements of turbidity and electron micrographs, we observed that the secretory proteins were isolated as complexes. These complexes are most likely at initial stages of assembly; further assembly into insoluble fibers must occur in vivo. Denaturation and reduction disrupted the complexes, and removal of the denaturing and reducing agents resulted in reassembly of the complexes. The circular dichroic spectrum of the complexes indicated that the assembled proteins had the tertiary structure alpha + beta. The largest secretory proteins were purified and shown to have both similar morphology, using electron microscopy, and a similar dichroic spectrum to that of the native complexes. We concluded that the large secretory proteins form the fibrous backbone of the complexes that we observe.  相似文献   

16.
A model for the evolution of a family of tandemly repeated genes in a single chromosome lineage under intrachromosomal gene conversion [43] is analyzed further and extended. Direct and diffusion approximations are derived for the exact fixation probabilities, mean time to fixation or loss, and mean conditional fixation time of Nagylaki and Petes [43]. The distribution of the number of variant repeats under the joint action of gene conversion and reversible mutation is investigated; exact and approximate expressions are derived for the stationary distribution. It is shown that conversional bias greatly increases the amount of sequence homogeneity at equilibrium. The diffusion processes studied here also apply to selection and mutation in a finite population, and some new results are established for that classical problem.Supported by National Science Foundation Grant DEB81-03530. This paper is dedicated to the memory of Charles C. Conley (1933–1984), who greatly influenced and generously helped and taught the author.  相似文献   

17.
18.
19.
Summary At the XhoI site (45.08F) of plasmid mini-F a deletion of 649 bp was generated employing exonuclease Bal31. By this deletion nucleotide sequences functioning as origin II and the four 19 bp direct repeats constituting the incB region in front of the E protein gene were removed from the plasmid. Analysis of proteins radioactively labelled in Escherichia coli mini-cells indicated that all mini-F encoded proteins are expressed. However, the plasmid carrying the deletion was not capable of replicating from the primary origin (origin I, 42.6F). Recently a smaller deletion at the XhoI site (45.08F) of about 300 bp, removing only the region functioning as origin II and replicating from origin I, was described by Tanimoto and Iino (1984, 1985). The data presented suggest that the incB repeats are essential for the initiation of replication from origin I, and possibly also from origin II, and seem not to be engaged in the autoregulation of E protein expression.  相似文献   

20.
U Lendahl  L Wieslander 《Cell》1984,36(4):1027-1034
We describe the internal organization of a large part of the Balbiani ring (BR) 6 gene in Chironomus tentans. The BR6 gene is a diverged member of the BR gene family. It displays the characteristic hierarchic organization of repetitive sequences, but in the constant region of the repeat units the overall sequence homology is only 49% when compared to other BR genes. All four cysteines are among the few amino acids conserved in the constant region. In the subrepeat region the central part is built from a repeated tripeptide, Pro-Glu--Arg+. A similar charge distribution adjacent to prolines is found in other BR gene subrepeat regions, most pronouncedly in the BR2-encoded protein. These conserved properties of the BR gene products are relevant to the issue how the various BR gene products interact to form a supramolecular structure, the larval tube, and how functional demands influence the evolution of a eucaryotic gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号