首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. The NBD group of acyl chain labeled NBD lipids is known to loop up to the membrane interface in fluid phase membranes. However, the organization of these lipids in gel phase membranes is not resolved. In this paper, we monitored the influence of the membrane phase state on the looping up behavior of acyl chain labeled NBD lipids utilizing red edge excitation shift (REES) and other sensitive fluorescence approaches. Interestingly, our REES results indicate that NBD group of lipids, which are labeled at the fatty acyl region, resides in the more hydrophobic region in gel phase membranes, and complete looping of the NBD group occurs only in the fluid phase. This is supported by other fluorescence parameters such as polarization and lifetime. Taken together, our results demonstrate that membrane packing, which depends on temperature and the phase state of the membrane, significantly affects the localization of acyl chain labeled NBD lipids. In view of the wide ranging use of NBD-labeled lipids in cell and membrane biology, these results could have potentially important implications in future studies involving these lipids as tracers.  相似文献   

2.
Melittin, a cationic hemolytic peptide, is intrinsically fluorescent due to the presence of a single functionally important tryptophan residue. We have previously shown that the sole tryptophan of melittin is localized in a motionally restricted environment in the membrane interface. We have monitored the effect of ionic strength on the organization and dynamics of membrane-bound melittin utilizing fluorescence and circular dichroism (CD) spectroscopic approaches. Our results show that red edge excitation shift (REES) of melittin bound to membranes is sensitive to the change in ionic strength of the medium. This could be attributed to a change in the immediate environment around melittin tryptophan with increasing ionic strength due to differential solvation of ions. Interestingly, the rotational mobility of melittin does not appear to be affected with change in ionic strength. In addition, fluorescence parameters such as lifetime and acrylamide quenching of melittin indicate an increase in water penetration in the membrane interface upon increasing ionic strength. Our results suggest that the solvent dynamics and water penetration in the interfacial region of the membranes are significantly affected at physiologically relevant ionic strength. These results assume significance in the overall context of the influence of ionic strength in the organization and dynamics of membrane proteins and membrane-active peptides.  相似文献   

3.
Many soluble proteins are known to interact with membranes in partially disordered states, and the mechanism and relevance of such interactions in cellular processes are beginning to be understood. Bovine α-lactalbumin (BLA) represents an excellent prototype for monitoring membrane interaction due to its conformational plasticity. In this work, we comprehensively monitored the interaction of apo-BLA with zwitterionic and negatively charged membranes utilizing a variety of approaches. We show that BLA preferentially binds to negatively charged membranes at acidic pH with higher binding affinity. This is supported by spectral changes observed with a potential-sensitive membrane probe and fluorescence anisotropy measurements of a hydrophobic probe. Our results show that BLA exhibits a molten globule conformation when bound to negatively charged membranes. We further show, using the parallax approach, that BLA penetrates the interior of negatively charged membranes, and tryptophan residues are localized at the membrane interface. Red edge excitation shift (REES) measurements reveal that the immediate environment of tryptophans in membrane-bound BLA is restricted, and the restriction is dependent on membrane lipid composition. We envision that understanding the mechanism of BLA–membrane interaction would help in bioengineering of α-lactalbumin, and to address the mechanism of tumoricidal and antimicrobial activities of BLA–oleic acid complex.  相似文献   

4.
The lipid dynamics of the adrenocortical microsomal membranes was studied by monitoring the fluorescence anisotropy and excited state lifetime of a set of anthroyloxy fatty acid probes (2-, 7-, 9- and 12-(9-anthroyloxy)-stearic acid (AP) and 16-(9-anthroyloxy)palmitic acid (AS). It was found that a decreasing polarity gradient from the aqueous membrane interface to the membrane interior, was present. This gradient was not modified by the proteins, as evidenced by comparison of complete membranes and derived liposomes, suggesting that the anthroyloxy probes were not in close contact with the proteins. An important change of the value of the mean rotational relaxation time as a function of the position of the anthroyl ring along the acyl chain was evidenced. In the complete membranes, a relatively more fluid medium was evidenced in the C16 as compared to the C2 region, while the rotational motion appeared to be the most hindered at the C7–C9 level. In the derived liposomes, a similar trend was observed but the mobility was higher at all levels. The decrease of the mean rotational relaxation time was more important for 12-AS and 16-AP. Temperature dependence of the mean rotational relaxation time of 2-AS, 12-AS and 16-AP in the complete membranes revealed the existence of a lipid reorganization occurring around 27°C and concerning mainly the C16 region. The extent to which the acyl chain reacted to this perturbation at the C12 level depended on pH. The presence of proteins increased the apparent magnitude of this reorganization and also modified the critical temperature from approx. 23°C in the derived liposomes to approx. 27°C in the complete membranes. Thermal dependence of the maximum velocity of the 3-oxosteroid Δ54-isomerase, the second enzyme in the enzymatic sequence, responsible for the biosynthesis of the 3-oxo4-steroids in the adrenal cortex microsomes, was studied. The activation energy of the catalyzed reaction was found to be low and constant (2–5 kcal · mol?1) in the temperature range 16–40°C at pH 7.5, 8.5 and 9, corresponding to the minimum, intermediate and maximum rate, respectively. A drastic increase of the activation energy (20 kcal · mol?1) was observed at temperature below 16°C at pH 7.5. A correlated change of the pKESapp as function of temperature was detected; at 36°C pKESapp = 8.3 while at 13°C the value shifted to 8.7. The pH range of the group ionization was narrower at 13°C. In contrast with the behaviour of the 3β-hydroxy5-steroid dehydrogenase, the 3-oxosteroid Δ54-isomerase was apparently unaffected by the lipid reorganization at 27°C. It is suggested that this enzyme possesses a different and more fluid lipid environment than the bulk lipids.  相似文献   

5.
The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19 nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.  相似文献   

6.
A formalism for membrane protein structure determination was developed. This method is based on steady-state FRET data and information about the position of the fluorescence maxima on site-directed fluorescent labeled proteins in combination with global data analysis utilizing simulation-based fitting. The methodology was applied to determine the structural properties of the N-terminal domain of the major coat protein from bacteriophage M13 reconstituted into unilamellar DOPC/DOPG (4:1 mol/mol) vesicles. For our purpose, the cysteine mutants A7C, A9C, N12C, S13C, Q15C, A16C, S17C, and A18C in the N-terminal domain of this protein were produced and specifically labeled with the fluorescence probe AEDANS. The energy transfer data from the natural Trp-26 to AEDANS were analyzed assuming a two-helix protein model. Furthermore, the polarity Stokes shift of the AEDANS fluorescence maxima is taken into account. As a result the orientation and tilt of the N-terminal protein domain with respect to the bilayer interface were obtained, showing for the first time, to our knowledge, an overall alpha-helical protein conformation from amino acid residues 12-46, close to the protein conformation in the intact phage.  相似文献   

7.
In oxidative environments, biomembranes contain oxidized lipids with short, polar acyl chains. Two stable lipid oxidation products are PoxnoPC and PazePC. PoxnoPC has a carbonyl group, and PazePC has an anionic carboxyl group pendant at the end of the short, oxidized acyl chain. We have used MD simulations to explore the possibility of complete chain reversal in OXPLs in POPC-OXPL mixtures. The polar AZ chain of PazePC undergoes chain reversal without compromising the lipid bilayer integrity at concentrations up to 25% OXPL, and the carboxyl group points into the aqueous phase. Counterintuitively, the perturbation of overall membrane structural and dynamic properties is stronger for PoxnoPC than for PazePC. This is because of the overall condensing and ordering effect of sodium ions bound strongly to the lipids in the PazePC simulations. The reorientation of AZ chain is similar for two different lipid force fields. This work provides the first molecular evidence of the “extended lipid conformation” in phospholipid membranes. The chain reversal of PazePC lipids decorates the membrane interface with reactive, negatively charged functional groups. Such chain reversal is likely to exert a profound influence on the structure and dynamics of biological membranes, and on membrane-associated biological processes.  相似文献   

8.
Lipids that are covalently labeled with the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group are widely used as fluorescent analogues of native lipids in model and biological membranes to study a variety of processes. The fluorescent NBD group may be attached either to the polar or the apolar regions of a wide variety of lipid molecules. Synthetic routes for preparing the lipids, and spectroscopic and ionization properties of these probes are reviewed in this report. The orientation of various NBD-labeled lipids in membranes, as indicated by the location of the NBD group, is also discussed. The NBD group is uncharged at neutral pH in membranes, but loops up to the surface if attached to acyl chains of phospholipids. These lipids find applications in a variety of membrane-related studies which include membrane fusion, lipid motion and dynamics, organization of lipids and proteins in membranes, intracellular lipid transfer, and bilayer to hexagonal phase transition in liposomes. Use of NBD-labeled lipids as analogues of natural lipids is critically evaluated.  相似文献   

9.
An instrument that measures the temperature dependence of fluorescence polarisation and intensity directly and continuously is described. The behaviour of four fluorescent probes bound to a number of well characterised model systems was then examined. The motional properties of the probes were determined from the polarisation and intensity data and were found to be sensitive to the crystallineliquid crystalline phase transitions in phospholipid vesicles of dimyristoyl and dipalmitoyl phosphatidylcholine. Binary mixture of dilauroyl and dipalmitoyl phosphatidycholine show lateral phase separation and in this system the probes partition preferentially into the more ‘fluid’ phase. In systems that have been reported to contain ‘short range order’ or ‘liquid clustering’, such as dioleoyl phosphatidylcholine and liquid paraffin, the motion of the probes was found to have anomalous Arrhenius behaviour consistent with the idea that homogeneous phases were not being sampled. The significance of these findings for the interpretation of the behaviour of fluorescent probes bound to natural membranes is discussed.  相似文献   

10.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   

11.
Melittin, a cationic hemolytic peptide, is intrinsically fluorescent due to the presence of a single functionally important tryptophan residue. The organization of membrane-bound melittin is dependent on the physical state and composition of membranes. In particular, polyunsaturated lipids have been shown to modulate the membrane-disruptive action of melittin. Phospholipids with polyunsaturated acyl chains are known to modulate a number of physical properties of membranes and play an important role in regulating structure and function of membrane proteins. In this study, we have used melittin to address the influence of unsaturated lipids in modulating lipid-protein interactions. Our results show that fluorescence parameters such as intensity, emission maximum, polarization, lifetime and acrylamide quenching of melittin incorporated in membranes are dependent on the degree of unsaturation of lipids in membranes. Importantly, melittin in membranes composed of various unsaturated lipids shows red edge excitation shift (REES) implying that melittin is localized in a motionally restricted region in membranes. The extent of REES was found to increase drastically in membranes with increasing unsaturation, especially when the lipids contained more than two double bonds. In addition, increasing unsaturation in membranes causes a considerable change in the secondary structure of membrane-bound melittin. Taken together, our results assume significance in the overall context of the role of unsaturated lipids in membranes in the organization and function of membrane proteins and membrane-active peptides.  相似文献   

12.
13.
We have monitored the organization and dynamics of the hemolytic peptide melittin in membranes containing cholesterol by utilizing the intrinsic fluorescence properties of its functionally important sole tryptophan residue and circular dichroism spectroscopy. The significance of this study is based on the fact that the natural target for melittin is the erythrocyte membrane, which contains high amounts of cholesterol. Our results show that the presence of cholesterol inhibits melittin-induced leakage of lipid vesicles and the extent of inhibition appears to be dependent on the concentration of membrane cholesterol. The presence of cholesterol is also shown to reduce binding of melittin to membranes. Our results show that fluorescence parameters such as intensity, emission maximum, and lifetime of membrane-bound melittin indicate a change in polarity in the immediate vicinity of the tryptophan residue probably due to increased water penetration in presence of cholesterol. This is supported by results from fluorescence quenching experiments using acrylamide as the quencher. Membrane penetration depth analysis by the parallax method shows that the melittin tryptophan is localized at a relatively shallow depth in membranes containing cholesterol. Analysis of energy transfer results using melittin tryptophan (donor) and dehydroergosterol (acceptor) indicates that dehydroergosterol is not randomly distributed and is preferentially localized around the tryptophan residue of membrane-bound melittin, even at the low concentrations used. Taken together, our results are relevant in understanding the interaction of melittin with membranes in general, and with cholesterol-containing membranes in particular, with possible relevance to its interaction with the erythrocyte membrane.  相似文献   

14.
The pH-dependent insertion of pHLIP across membranes is proving to be a useful property for targeting acidic tissues or tumors and delivering drugs attached to its C-terminus. It also serves as a model peptide for studies of protein insertion into membranes, so further elucidation of the insertion mechanism of pHLIP and its features is desirable. We examine how the peptide perturbs a model phosphatidylcholine membrane and how it associates with the lipid bilayer using an array of fluorescence techniques, including fluorescence anisotropy measurements of TMA-DPH anchored in bilayers, quenching of pHLIP fluorescence by brominated lipids and acrylamide, and measurements of energy transfer between aromatic residues of pHLIP and TMA-DPH. When pHLIP is bound to the surface of bilayers near neutral pH, the membrane integrity is preserved whereas the elastic properties of bilayers are changed as reported by an increase of membrane viscosity. When it is inserted, there is little perturbation of the lipids. The results also suggest that pHLIP can bind to the membrane surface in a shallow or a deep mode depending on the phase state of the lipids. Using parallax analysis, the change of the penetration depth of pHLIP was estimated to be 0.4 Å from the bilayer center and 2.8 Å from the membrane surface after the liquid-to-gel phase transition.  相似文献   

15.
Time dependence of fluorescence enhancement of probes after addition to lipid vesicles has been used to investigate the position of chromophores in the lipid bilayer. Incorporation studies of a series of n-(9-anthroyloxy) fatty acids (n = 2, 2, 12 and 16) and 1,6-diphenylhexatriene in dipalmitoyl phosphatidylcholine vesicles are described. The activation energies for incorporation of these several lipid-mimic type fluorescent probes have been measured. Results show that the activation energy is a function of the distance of the anthracene moiety (chromophore) from the polar end of the probe and the length of the acyl portion of the probe. An average insertion energy of 0.6 kcal/carbon is seen for these fatty acid probes. The activation energy of 1,6-diphenylhexatriene, a factor of 2 greater than that of 16-(9-anthroyloxy)palmitic acid, is consistent with locating 1,6-diphenyl-hexatriene in the middle of the bilayer.  相似文献   

16.
It is known that ceramides can influence the lateral organization in biological membranes. In particular ceramides have been shown to alter the composition of cholesterol and sphingolipid enriched nanoscopic domains, by displacing cholesterol, and forming gel phase domains with sphingomyelin. Here we have investigated how the bilayer content of ceramides and their chain length influence sterol partitioning into the membranes. The effect of ceramides with saturated chains ranging from 4 to 24 carbons in length was investigated. In addition, unsaturated 18:1- and 24:1-ceramides were also examined. The sterol partitioning into bilayer membranes was studied by measuring the distribution of cholestatrienol, a fluorescent cholesterol analogue, between methyl-β-cyclodextrin and large unilamellar vesicle with defined lipid composition. Up to 15 mol% ceramide was added to bilayers composed of DOPC:PSM:cholesterol (3:1:1), and the effect on sterol partitioning was measured. Both at 23 and 37 °C addition of ceramide affected the sterol partitioning in a chain length dependent manner, so that the ceramides with intermediate chain lengths were the most effective in reducing sterol partitioning into the membranes. At 23 °C the 18:1-ceramide was not as effective at inhibiting sterol partitioning into the vesicles as its saturated equivalent, but at 37 °C the additional double bond had no effect. The longer 24:1-ceramide behaved as 24:0-ceramide at both temperatures. In conclusion, this work shows how the distribution of sterols within sphingomyelin-containing membranes is affected by the acyl chain composition in ceramides. The overall membrane partitioning measured in this study reflects the differential partitioning of sterol into ordered domains where ceramides compete with the sterol for association with sphingomyelin.  相似文献   

17.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. NBD-labeled lipids have previously been used to monitor the organization and dynamics of molecular assemblies such as membranes, micelles and reverse micelles utilizing the wavelength-selective fluorescence approach. In this paper, we have characterized the organization and dynamics of various NBD-labeled lipids using red edge excitation shift (REES) and other fluorescence approaches which include analysis of membrane penetration depths of the NBD group using the parallax method. We show here that the environment and location experienced by the NBD group of the NBD-labeled lipids could depend on the ionization state of the lipid. This could have potentially important implications in future studies involving NBD-labeled lipids as tracers in a cellular context.  相似文献   

18.
Synthesis and physical properties of a new anthracene fatty acid, 9-(2-anthryl)nonanoic acid, and the corresponding anthracene-phosphatidylcholines which were obtained by condensing the acid with sn-1-palmitoyl-lysophosphatidylcholine (PAPC) and with egg lysophosphatidylcholine (EAPC) are described. Differential scanning calorimetry experiments show that these lipids can undergo a liquid-crystal to gel phase transition at temperatures of 15°C and 18°C for EAPC and PAPC, respectively. In monolayers, PAPC exhibits a compression curve nearly superimposable to that of dipalmitoylphosphatidylcholine (DPPC), with a molecular area of 0.48 nm2 at π = 30 mN m?1. The data indicate that in these lipids, the anthracene group is only slightly more bulky than a normal acyl chain and that it does not significantly affect the regular phospholipid molecular packing. In ethanol solutions or when incorporated into egg phosphatidylcholine liposomes in a molar ratio of 1%, these lipids display UV absorption spectra and fluorescence emission spectra similar to those of 2-methyl anthracene. For EAPC liposomes, a broad and structureless fluorescence emission spectrum centered at around 450 nm, was recorded, suggesting the occurrence of anthracene excimers. As ascertained by UV spectrophotometry, differential scanning calorimetry, fluorescence polarization and anthracene photodimerization experiments, EAPC displays good miscibility properties with lipids in the liquid state (egg phosphatidylcholine) or in the gel state (distearoylphosphatidylcholine (DSPC)). The potential of these anthracene derivatives for studying the dynamics and the topological distribution of lipids in biomembranes is discussed.  相似文献   

19.
Ergosterol is an evolutionary precursor of cholesterol and is the major sterol present in lower eukaryotes. Although detailed biophysical characterization of the effect of cholesterol on membranes is well documented, the effect of ergosterol on the organization and dynamics of membranes is still at a very early stage. We have monitored the effect of cholesterol and ergosterol on the dynamic properties of both fluid (POPC) and gel (DPPC) phase membranes utilizing fluorescent reporter probes pyrene and TMA-DPH. These results show, for the first time, the important differences on the effect of cholesterol and ergosterol in short-range ordering (reported by TMA-DPH) and long-range dynamics (reported by pyrene). In addition, pyrene vibronic peak intensity ratio provides information on polarity of the microenvironment experienced by the probe. These novel results are relevant in the context of membrane domains in ergosterol-containing organisms such as Drosophila which maintain a low level of sterol compared to higher eukaryotes.  相似文献   

20.
Permeabilization of the phospholipid membrane, induced by the antibiotic peptides zervamicin IIB (ZER), ampullosporin A (AMP) and antiamoebin I (ANT) was investigated in a vesicular model system. Membrane-perturbing properties of these 15/16 residue peptides were examined by measuring the K+ transport across phosphatidyl choline (PC) membrane and by dissipation of the transmembrane potential. The membrane activities are found to decrease in the order ZER > AMP >> ANT, which correlates with the sequence of their binding affinities. To follow the insertion of the N-terminal Trp residue of ZER and AMP, the environmental sensitivity of its fluorescence was explored as well as the fluorescence quenching by water-soluble (iodide) and membrane-bound (5- and 16-doxyl stearic acids) quenchers. In contrast to AMP, the binding affinity of ZER as well as the depth of its Trp penetration is strongly influenced by the thickness of the membrane (diC16:1PC, diC18:1PC, C16:0/C18:1PC, diC20:1PC). In thin membranes, ZER shows a higher tendency to transmembrane alignment. In thick membranes, the in-plane surface association of these peptaibols results in a deeper insertion of the Trp residue of AMP which is in agreement with model calculations on the localization of both peptide molecules at the hydrophilic-hydrophobic interface. The observed differences between the membrane affinities/activities of the studied peptaibols are discussed in relation to their hydrophobic and amphipathic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号