首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of simulated opposing natural selection on the response to mass selection for 18-day pupa weight of Tribolium castaneum was studied for 10 generations of selection. Natural selection was simulated in replicated treatment lines by imposing a negative relationship between mid-parent genetic value for pupa weight and fertility. Responses to selection and realized heritabilities were smaller (P < 0.05 and P < 0.10, respectively) for the treatment lines than for control lines under selection for pupa weight only. One treatment, line E3G1, reached an intermediate selection plateau by generation 10, and responded linearly to 4 generations of artificial selection after natural selection had been discontinued. Possible explanations for the different behaviors of the replicate lines E3G1 and E3G2 were also discussed.  相似文献   

2.
Both strong directional selection and faster development are thought to destabilize development, giving rise to greater fluctuating asymmetry (FA), although there is no strong empirical evidence supporting this assertion. We compared FA in sternopleural bristle number in four populations ofDrosophila melanogaster successfully selected for faster development from egg to adult, and in four control populations. The fraction of perfectly symmetric individuals was higher in the selected populations, whereas the FA levels did not differ significantly between selected and control populations, clearly indicating that directional selection for faster development has not led to increased FA in sternopleural bristle number in these populations. This may be because: (i) development time and FA are uncorrelated, (ii) faster development does result in FA, but selection has favoured developmentally stable individuals that can develop fast and still be symmetrical, or (iii) the increased fraction of symmetric individuals in the selected populations is an artifact of reduced body size. Although we cannot discriminate among these explanations, our results suggest that the relationship between development time, FA and fitness may be far more subtle than often thought.  相似文献   

3.
We analyzed the developmental time, egg-to-adult viability, and developmental stability (fluctuating wing size asymmetry) in Drosophila subobscura, maintained for six generations on different concentrations of lead. Development time is significantly affected by generation and lead concentration, but interaction of these factors is not a significant source of variability for this fitness component. Generation and the interaction generation x concentration of lead significantly affect egg-to-adult viability. Levene's test of heterogeneity of variance showed that variability of FA is not significant in any of the samples. Within both lead concentrations females showed significantly higher FA indices for the wing width than males. Within sexes, a significantly higher FA was found only in females for wing width FA between the control and the lower concentration of lead. The results show that if strong relationship between FA and the studied fitness components exists, it results in a stronger selection of unstable genotypes under lead as a stress factor and, consequently, FA needs to be used with caution as a biomarker in natural populations under environmental stress.  相似文献   

4.
Successive generations of bi- and multivoltine species encounter differing biotic and abiotic environments intra-annually. The question of whether selection can independently adjust the relationship between body size and components of reproductive effort within successive generations in response to generation-specific environmental variation is applicable to a diversity of taxa. Herein, we develop a conceptual framework that illustrates increasingly independent life history adjustments between successive generations of taxa exhibiting complex life cycles. We apply this framework to the reproductive biology of the gall-forming insect, Belonocnema treatae (Hymenoptera: Cynipidae). This bivoltine species expresses cyclical parthenogenesis in which alternating sexual and asexual generations develop in different seasons and different environments. We tested the hypotheses that ecological divergence between the alternate generations is accompanied by generational differences in body size, egg size, and egg number and by changes in the relationships between body size and these components of reproductive effort. Increased potential reproductive effort of sexual generation B. treatae is attained by increased body size and egg number (with no trade-off between egg number and egg size) and by a significant increase in the slope of the relationship between body size and potential fecundity. These generation-specific relationships, interpreted in the context of the model framework, suggest that within each generation selection has independently molded the relationships relating body size to potential fecundity and potential reproductive effort in B. treatae. The conceptual framework is broadly applicable to comparisons involving the alternating generations of bi- and multivoltine species.  相似文献   

5.
The genetic basis for developmental stability, the ability of an organism to withstand genetic and environmental disturbance of development, is poorly understood. Fluctuating asymmetry (FA: small random deviations from symmetry in paired, bilateral traits) is the most widely used measure of developmental stability, and evidence suggests FA is weakly and negatively associated with genome‐wide heterozygosity. We investigated the genetic basis of developmental stability in the yellow dung fly. Fly lines were inbred for 16 generations at which time they were homozygous at the phosphoglucomutase (PGM) loci and PGM appears to influence FA in at least one other taxon. After 16 generations of inbreeding, lines homozygous for different PGM alleles were crossed and levels of FA for four metric traits were compared in the inbred and crossed flies. We also compared FA levels in these flies with previously gathered data on wild‐type (second generation outcrossed) flies, and additionally looked at the effects of two environmental stresses (larval food limitation and increased temperature) on FA. There were no significant differences in any measure of FA, nor in mean FA, in any trait when inbred and crossed flies were compared. Comparison of FA in these and wild flies also revealed no significant differences. Food limitation had no influence on FA, whereas heat stress increased FA of naturally, but not sexually, selected traits. Our results do not show a negative relationship between heterozygosity and FA, but support the notion that FA levels are stress, trait and taxon specific.  相似文献   

6.
We measured the impact of new mutations on genetic variation for body size in two independent sets of C. elegans spontaneous mutation-accumulation (MA) lines, derived from the N2 strain, that had been maintained by selfing for 60 or 152 generations. The two sets of lines gave broadly consistent results. The change of among-line genetic variation between cryopreserved controls and the MA lines implied that broad sense heritability increased by 0.4% per generation. Overall, MA reduced mean body size by approximately 0.1% per generation. The genome-wide rate for mutations with detectable effects on size was estimated to be approximately 0.0025 per haploid genome per generation, and their mean effects were approximately 20%. The proportion of mutations that increase body size was estimated by maximum likelihood to be no more than 20%, suggesting that the amount of mutational variation available for selection for increased size could be quite small. This hypothesis was supported by an artificial selection experiment on adult body size, started from a single highly inbred N2 individual. We observed a strongly asymmetrical response to selection of a magnitude consistent with the input of mutational variance observed in the MA experiment.  相似文献   

7.
S. V. Nuzhdin  J. D. Fry    TFC. Mackay 《Genetics》1995,139(2):861-872
The association between sternopleural and abdominal bristle number and fitness in Drosophila melanogaster was determined for sublines of an initially highly inbred strain that were maintained by divergent artificial selection for 150 generations or by random mating for 180 generations. Replicate selection lines had more extreme bristle numbers than those that were maintained without artificial selection at the same census size for approximately the same number of generations. The average fitness, estimated by a single generation of competition against a compound autosome strain, was 0.17 for lines selected for high and low abdominal bristle numbers and 0.19 for lines selected for high and low sternopleural bristle number. The average fitness of unselected lines, 0.46, was significantly higher than that of the selection lines. The fitnesses and the relationships of bristle number to fitness in progeny of all possible crosses of high X high (H X H), high X low (H X L) and low X low (L X L) selection lines were examined to determine whether the observed intermediate optima were caused by direct stabilizing selection on bristle number or by apparent stabilizing selection mediated through deleterious pleiotropic fitness effects of mutations affecting bristle number. Although bristle number was nearly additive for progeny of H X H, H X L and L X L crosses among sternopleural bristle selection lines, their mean fitnesses were not significantly different from each other, or from the mean fitness of the unselected lines, suggesting partly or completely recessive pleiotropic fitness effects cause apparent stabilizing selection. The average fitness of the progeny of H X H abdominal bristle selection lines was not significantly different from the fitness of unselected lines, but the mean fitness of the progeny of L X L crosses was not significantly different from that of the pure low lines. This is consistent with direct selection against low but not high abdominal bristle number, but the interpretation is confounded by variation in average degree of dominance for fitness (on average recessive in the high abdominal bristle selection lines and additive in the low abdominal bristle selection lines). Neither direct stabilizing selection nor pleiotropy, therefore, can account for all the observations.  相似文献   

8.
Greater oxygen availability has been hypothesized to be important in allowing the evolution of larger invertebrates during the Earth’s history, and across aquatic environments. We tested for evolutionary and developmental responses of adult body size of Drosophila melanogaster to hypoxia and hyperoxia. Individually reared flies were smaller in hypoxia, but hyperoxia had no effect. In each of three oxygen treatments (hypoxia, normoxia or hyperoxia) we reared three replicate lines of flies for seven generations, followed by four generations in normoxia. In hypoxia, responses were due primarily to developmental plasticity, as average body size fell in one generation and returned to control values after one to two generations of normoxia. In hyperoxia, flies evolved larger body sizes. Maximal fly mass was reached during the first generation of return from hyperoxia to normoxia. Our results suggest that higher oxygen levels could cause invertebrate species to evolve larger average sizes, rather than simply permitting evolution of giant species.  相似文献   

9.
Summary An apparatus has been made for the automatic selection of Drosophila for body size, operating on the principle of a fractionating sieve. The measurements of individual flies by this method were approximately normally distributed and the repeatability of measurements on successive days was 0.5. A two-way selection experiment for this character was carried out with two replicates for ten generations. The realised heritability for the measured score was 0.14±0.02 for high score and 0.20±0.02 when it was for low score. The correlated response in body weight was asymmetrical, the change downwards being much greater than that upwards. There was a clear divergence in activity measurements between the lines selected in the two directions but no clear trends in fertility. Examination of the selected lines after eleven generations showed that the relationship between score and body weight was clearly different in the lines selected in the two directions and was non-linear in both.It is suggested that the response in activity observed as a consequence of selection for score is partly due to the direct response for activity and partly to a correlated response because of a negative genetic correlation between body size and activity. The observed non-linear relationship between score and body weight observed within generations may be a direct cause of the asymmetry of direct and correlated responses which may also have a parallel in other situations.  相似文献   

10.
Fluctuating asymmetry (FA) may be a sensitive indicator of the stress experienced by organisms during their development. Its use in this manner is an intuitively appealing, frequently proposed, and potentially powerful tool but remains controversial partially because its underlying premise rarely has been critically tested. Such tests should include direct comparisons among individuals for which levels of FA, stress and fitness have been unambiguously quantified. We assessed the use of FA as a bioindicator of the stress experienced during egg-to-adult development by the stem-mining sawfly, Cephus cinctus Norton. Sawflies were reared in a common garden from seven different wheat cultivars, which were selected to represent a gradient of stem solidness, a key factor imposing stress on sawflies during development. In this model system, stress was quantified by the weight of emergent adults. Fitness was quantified by counting the number of eggs in dissected females, which emerge with their full lifetime complement. FA was measured for wing length, three wing cells, and three wing veins using image analyses. The greatest amount of stress was induced by solid-stemmed cultivars from which the adults were significantly smaller than those developing in hollow-stemmed hosts. In turn, adult weight was positively correlated with fitness. The net effect was a 25-fold variation in sawfly fitness, which gave a reasonable expectation that FA levels would differ across cultivars. However, FA levels of all the traits were similar among cultivars and there was no negative relationship between FA and fitness. These results: (1) document the failure of FA as an indicator of stress in this model system, (2) identify adult weight as a satisfactory indicator of plant-induced stress and sawfly fitness, and (3) add to the growing body of literature questioning the value of FA as a biomonitor tool of developmental stress.  相似文献   

11.
Due to inconsistent results of the empirical studies, the relationship between fluctuating asymmetry (FA, a measure of developmental stability) and interspecific hybridization has been the subject of intense debates. In the present study, we have assessed the impact of interspecific hybridization between 2 sibling species of Drosophila: Drosophila ananassae and Drosophila pallidosa on the levels of FA over 3 generations. Trait size of different morphological traits, namely, sternopleural bristle number, wing length (WL), wing to thorax (W/T) ratio, sex comb tooth number (SCTN), and ovariole number differed significantly among parental species and their hybrids of different generations in both the sexes. However, the levels of FA of different morphological traits were similar in parental species and their hybrids of different generations in males (except SCTN) and in females (except for WL and W/T ratio). These results are interpreted in terms of developmental stability as a function of a balance between the level of heterozygosity and the disruption of coadapted gene complexes.  相似文献   

12.
Effects of nine generations of 450r per generation of ancestral spermatogonial X irradiation of inbred rats on body weight were examined. After six generations of random mating (avoiding inbreeding) following the termination of irradiation, descendants of irradiated males (R) were significantly lighter than their controls (C) at 3 and 6 weeks, but not at 10 weeks of age. However, differences in growth between R and C populations were small. Among-litter and within-litter variance estimates were generally larger in the R lines than in the C lines, suggesting that selection responses would be greater in R than in C lines. In conjunction with previous evidence—obtained during the irradiation phase of the experiment—this suggested that more rapid response to selection for 6-week body weight, in particular, might accrue in the R lines.  相似文献   

13.
In this study, we explored the effects of pesticide on fluctuating asymmetry (FA) levels and mortality of Ceriagrion sp. larvae. The results showed that the mortality of larval damselflies treated with pesticide was significantly higher than that treated with tap water which had been aerated for 48 h, but there were no significant differences among mortality of larvae treated with different concentrations of pesticide. Meanwhile, we found that the level of FA of the first tibia length, one of the seven bilaterally symmetrical traits (First femur length, First tibia length, Second femur length, Second tibia length, Third femur length, Third tibia length and Prementum width), differed significantly with different treatments, whereas the others did not show any significant differences. The Bonferroni (Dunn) t Tests revealed that FA of the first tibia length at 15 × 10−9 mgl−1 was significantly higher than that at 1.5 × 10−9 mgl−1 and control. There was no significant relationship between trait size and the absolute difference between their right and left sides. There was also no significant relationship between body size and the absolute difference between right and left sides. Trait size was significantly positively correlated with body size. FA was not associated with mortality. Therefore, we concluded that FA of the first tibia length of Ceriagrion sp. larvae may be induced by sublethal doses of pesticides. That is to say, its FA may be regarded as an indicator of reflecting the level of pesticide stress. Handling editor: K. Martens  相似文献   

14.
Males of the horned beetle Onthophagus acuminatus Har. (Coleoptera: Scarabaeidae) exhibit horn length dimorphism due to a sigmoidal allometric relationship between horn length and body size: the steep slope of the allometry around the inflection of the sigmoid curve separates males into two groups; those larger than this inflection possess long horns, and those smaller than this inflection have short horns or lack horns. I examined the genetic basis of the allometric relationship between horn length and body size by selecting males that produced unusually long horns, and males that produced unusually short horns, for their respective body sizes. After seven generations of selection, lines selected for relatively long horns had significantly longer horn lengths for a given body size than lines selected for relatively short horns, indicating a heritable component to variation in the allometry. The sigmoidal shape of the allometry was not affected by this selection regime. Rather, selected lines differed in the position of the allometry along the body size axis. One consequence of lateral shifts in this allometric relationship was that the body size separating horned from hornless males (the point of inflection of the sigmoid curve) differed between selection lines: lines in which males were selected for relatively long horns began horn production at smaller body sizes than lines selected for relatively short horns. These results suggest that populations can evolve in response to selection on male horn length through modification of the growth relationship between horn length and body size.  相似文献   

15.
Variation in rates of molecular evolution has been attributed to numerous, interrelated causes, including metabolic rate, body size, and generation time. Speculation concerning the influence of metabolic rate on rates of evolution often invokes the putative mutagenic effects of oxidative stress. To isolate the effects of oxidative stress on the germline from the effects of metabolic rate, generation time, and other factors, we allowed mutations to accumulate under relaxed selection for 125 generations in two strains of the nematode Caenorhabditis elegans, the canonical wild-type strain (N2) and a mutant strain with elevated steady-state oxidative stress (mev-1). Contrary to our expectation, the mutational decline in fitness did not differ between N2 and mev-1. This result suggests that the mutagenic effects of oxidative stress in C. elegans are minor relative to the effects of other types of mutations, such as errors during DNA replication. However, mev-1 MA lines did go extinct more frequently than wild-type lines; some possible explanations for the difference in extinction rate are discussed.  相似文献   

16.
A possible effect of interpopulation hybridization is either outbreeding depression, as a consequence of breakdown of coadapted gene complexes which can increase developmental instability (DI) of the traits, or increased heterozygosity, which can reduce DI. One of the principal methods commonly used to estimate DI is the variability of fluctuating asymmetry (FA). We analysed the effect of interpopulation hybridization in Drosophila subobscura through the variability in the wing size and the FA of wing length and width for both sexes in parental, F1 and F2 generations. The results of the wing size per se in intra- and interpopulation hybrids of D. subobscura do not explicitly reveal the significance of either of the two hypotheses. However, the results of the FA of the wing traits give a different insight. The FA of wing length and width generally increases in interpopulation crosses in F1 with respect to the FA in the parental generation, which suggests the possibility that outbreeding depression occurred in the first generation after the hybridization event. We generally observed that the FA values for the wing length and width of interpopulation hybrids were higher in F1 and F2 generations, compared to intrapopulation hybrids in same generations. These results suggest that the association between coadaptive genes with the same evolutionary history are the most probable mechanism that maintains the developmental homeostasis in Drosophila subobscura populations.  相似文献   

17.
Windig JJ  Nylin S 《Heredity》2002,89(3):225-234
Fluctuating asymmetry (FA), small random differences between left and right, has been extensively used as a measure of individual quality, though its usefulness in that respect is controversial. Whether FA is heritable has implications for sexual selection theory and for its usefulness as an indicator of stress. Heritability (h(2)) of FA is, however, difficult to estimate precisely and reliably. Here we report h(2)s of FA for two pupal traits in the speckled wood butterfly (Pararge aegeria). We used a restriction error maximum likelihood (REML) analysis in combination with a jackknife procedure to analyse a large mixed offspring-parent/half-sib/full sib data set. A five-generation selection experiment provided a second set of narrow sense h(2)s. Narrow sense h(2)s were not significant and on average -0.029 (REML-analysis) and 0.031 (selection experiment) for the pupal segment covering the fore leg (LEG) and 0.057 and 0.004 for a SPOT on that segment. Estimated percentage dominance variances were 0.057 (LEG) and 0.027 (SPOT) and not significantly different from 0. The h(2) estimates had been slightly increased by cage effects. Average FA for LEG after five generations of selection were higher in the high lines than in the low lines, and the control lines were in between. No difference in FA between lines was found for SPOT. Although differences between lines were not significant, a slight h(2) (<3%) for LEG could not be excluded. The genetic effect was, however, small compared with the effect of foodplant quality. Larvae grown on foodplants that were not watered enough for good growth showed significantly higher FA for LEG, but not for SPOT, compared with larvae grown on good foodplants.  相似文献   

18.
Adaptive importance of inversion polymorphism has been discussed in Drosophila species at several levels but no study has been carried out demonstrating the individual and combined effects of polymorphic inversions on the fitness of flies through bi‐directional selection. Therefore, artificial bi‐directional selection for thorax length in Drosophila ananassae was carried out for 10 generations. Both, Tukey test for selection difference and regression coefficients of offspring on mid‐parent are highly significant. The realized heritability (h2) in males of both high and low selection lines is more or less similar but is more pronounced in low line females, which suggests the asymmetrical response. This asymmetry in selection is discussed in the light of evidence provided by the study of chromosome inversion frequencies in different selection lines at different generations of selection. Interestingly, chromosome inversion frequency changes towards homozygosity for different gene arrangements in different selection lines. Tests of correlations at G6 and G10 among different gene arrangements as well as with mean thorax length suggest that 2L‐ST gene arrangement is negatively correlated, while 3L‐ST gene arrangement is positively correlated with thorax length. Furthermore, the present study shows the significant effects of 3L‐ST and 2L + 3L (positive correlation) on thorax length, while 3R‐ST and 2L + 3R show significant effect (negative correlation) on thorax length, which was not evident in the previous study. Present results also suggest how polymorphic inversions and their combinations affect the body size differently in different selection lines. These results suggest that thorax length in D. ananassae is under polygenic control and inversion polymorphism plays crucial role in maintaining body size by modifying genotypic frequency under various selection pressures.  相似文献   

19.
Sambucetti P  Loeschcke V  Norry FM 《Hereditas》2006,143(2006):77-83
Clinal analysis for fitness-related traits provides a well-known approach to investigate adaptive evolution. Several fitness-related traits (developmental time, thorax length, wing length and wing loading) were measured at two laboratory generations (G7 and G33) of D. buzzatii from an altitudinal gradient from northwestern Argentina, where significant thermal differences persist. Developmental time (DT) was positively correlated with altitude of origin of population. Further, DT was negatively correlated with maximal mean temperature at the site of origin of population, and this thermal variable decreases with altitude. Wing loading tended to be larger in highland than in lowland populations, suggesting that flight performance is subject to stronger selection pressure in highland populations. Developmental time showed a significant increase with laboratory generation number. There was no significant correlation between developmental time and body size across populations along the altitudinal cline of DT. This result illustrates that developmental time and body size do not always evolve in the same direction, even though both traits are often positively and genetically correlated in a well-known tradeoff in Drosophila.  相似文献   

20.
Summary This experiment was designed to study the relationship between rate of inbreeding and observed inbreeding depression of larval viability, adult fecundity and cold shock mortality in Drosophila melanogaster. Rates of inbreeding used were full-sib mating and closed lines of N=4 and N=20. Eight generations of mating in the N=20 lines, three generations in the N=4 lines and one generation of full-sib mating were synchronised to simultaneously produce individuals with an expected level of inbreeding coefficient (F) of approximately 0.25. Inbreeding depression for the three traits was significant at F=0.25. N=20 lines showed significantly less inbreeding depression than full-sib mated lines for larval viability at approximately the same level of F. A similar trend was observed for fecundity. No effect of rate of inbreeding depression was found for cold shock mortality, but this trait was measured with less precision than the other two. Natural selection acting on loci influencing larval viability and fecundity during the process of inbreeding could explain these results. Selection is expected to be more effective with slow rates of inbreeding because there are more generations and greater opportunity for selection to act before F=0.25 is reached. Selection intensities seem to have been different in the three traits measured. Selection was most intense for larval viability, less intense for fecundity and, perhaps, negligible at loci influencing cold shock mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号