首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The intravenous administration of low doses of lysergic acid diethylamide (LSD) or of the selective 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depresses the firing activity of dorsal raphe 5-HT-containing neurons, presumably via the activation of 5-HT1A receptors. The present studies were undertaken to determine the effect of different types of 5-HT receptor antagonists on this effect of LSD and 8-OH-DPAT. (-)-Propranolol (2 mg/kg i.v.), methiothepin (2 mg/kg i.p., twice daily for 4 days followed by an additional dose of 2 mg/kg i.p., prior to the experiment), pelanserine (0.5 mg/kg i.v.), and indorenate (125 micrograms/kg i.v.) failed to block the effects of either LSD or 8-OH-DPAT on the firing activity of 5-HT neurons of the dorsal raphe nucleus. However, spiperone (1 mg/kg i.v.) significantly reduced the effect of both LSD and 8-OH-DPAT. These results indicate that, among the five putative 5-HT receptor antagonists tested, only spiperone can antagonize the suppressant effect of 5-HT receptor agonists on the firing of dorsal raphe 5-HT neurons.  相似文献   

2.
The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.  相似文献   

3.
The median raphe nucleus and dorsal raphe nucleus together are the major source of ascending 5-HT projections. Here, using in vitro extracellular single unit electrophysiology we examined the responses of individual neurones in the rat median raphe nucleus and dorsal raphe nucleus to alpha(1)-adrenoceptor and 5-HT(1A) receptor activation and made comparisons between the two nuclei. In the presence of the alpha(1)-adrenoceptor agonist phenylephrine (1microM) all spontaneously active neurones recorded in the median and dorsal raphe nuclei fired slowly (<5Hz) and regularly. Most were inhibited by 5-HT (10-50microM), although a few were excited by 5-HT. 5-HT-induced inhibition was attenuated by the 5-HT(1A) receptor antagonist, WAY100635 (100nM). Compared to those in the dorsal raphe nucleus, the neurones in the median raphe nucleus which were inhibited by 5-HT had: (1) lower basal firing rates in the continuous presence of phenylephrine (1microM), (2) smaller excitatory responses to higher concentrations of phenylephrine (3-10microM), (3) smaller excitatory responses to brief application of norepinephrine (10-100microM) and (4) smaller inhibitory responses to 5-HT (10-50microM). The lower sensitivity of median raphe neurones to alpha(1)-adrenoceptor excitation and 5-HT(1A) receptor inhibition will have consequences for 5-HT neurotransmission in forebrain regions innervated by the two nuclei.  相似文献   

4.
Effects of 5-HT2 receptor blockade on the amplitude of startle reflex, induced by an unexpected sound, and on its prepulse inhibition (PPI) were studied on mice of CBA strain and rats of Wistar and the genetically predisposed to catalepsy (GC) strains. The effect was dependent on type and dose of 5-HT2 antagonist used: 5-HT2A antagonist ketanserin increased startle amplitude at the dose of 0.5 mg/kg and decreased it at the dose of 2 mg/kg. Mixed 5-HT2A/2C antagonist ritanserin (0.1 and 0.2 mg/kg) markedly increased startle in mice. Ketanserin and cyproheptadine produced opposite effects on startle reflex in rats with inherited neuropathology and in rats with normal genotype: marked decrease in GC rats and increase in Wistar rats was shown. Ketanserin and cyproheptadine produced a pronounced potentiation of PPI in mice and rats of both strains, ritanserin was ineffective. Results suggest 5-HT2 receptors implication in both startle and PPI regulation with 5-HT2C receptors in startle response and 5-HT2A in PPI predominant involvement.  相似文献   

5.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

6.
The problem of drug-resistant depression indicates a strong need for alternative antidepressant therapies. In our earlier papers we described synergistic, antidepressant-like effects of a combination of imipramine (IMI) and amantadine (AMA) in the forced swimming test in rats, an animal model of depression. Moreover, preliminary clinical data showed that the above-mentioned combination had beneficial effects in treatment-resistant patients. In addition, a number of studies predicted a role of the brain-derived neurotrophic factor (BDNF) in the mechanism of action of antidepressant drugs (ADs). Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment with IMI (5 or 10 mg/kg) and AMA (10 mg/kg), given separately or jointly (twice daily for 14 day), on mRNA level (the Northern blot) in the hippocampus and cerebral cortex. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was dissected 24 h after the last dose of IMI and AMA. We also studied the effect of repeated treatment with IMI and AMA on the action of 5-HT(1A)- and 5-HT(2A) receptor agonists (8-OH-DPAT and (+/-)DOI, respectively) in behavioral tests. The obtained results showed that in the hippocampus IMI (10 mg/kg), and in the cerebral cortex IMI (5 and 10 mg/kg) and AMA (10 mg/kg) significantly elevated BDNF mRNA level. Joint administration of IMI (5 or 10 mg/kg) and AMA (10 mg/kg) induced a more potent increase BDNF gene expression in the hippocampus (but not in cerebral cortex) and either inhibited the behavioral syndrome induced by (+/-)DOI or did not change the action of 8-OH-DPAT (compared to treatment with either drug alone). The obtained results suggest that the enhancement of BDNF gene expression may be essential for the therapeutic effect of co-administration of IMI and AMA to drug-resistant depressed patients, and that among other mechanisms, 5-HT(2A) receptors possibly play some role in this effect.  相似文献   

7.
The present investigation was designed to determine the effect of hallucinogens on the facilitating action of serotonin (5-HT) and norepinephrine (NE) in the facial nucleus. Intravenous administration of d-lysergic acid diethylamide (LSD, 5–10 μg/kg), mescaline (0.5–1.0 mg/kg), or psilocin (0.5–1.0 mg/kg) had no effect by themselves on the glutamate-induced excitation of facial motoneurons. In contrast, the facilitation of facial neuron excitation by iontophoretically applied 5-HT and NE was enhanced 6–10 fold by these hallucinogens. The LSD-enhanced responses to 5-HT and NE continued for at least 4 hours after administration of the hallucinogen. Iontophoretic application of LSD or mescaline (low currents) also markedly potentiated the facilitating effect of 5-HT and NE. Higher currents of LSD (15–40 nA) temporarily antagonized the response to 5-HT. The nonhallucinogen ergot derivatives lisuride and methysergide failed to potentiate the facilitating effects of 5-HT or NE. These observations suggest that hallucinogens potentiate the effect of monoamines on facial motoneurons by increasing the sensitivity of 5-HT and NE receptors. A novel mechanism regarding the psychedelic effects of hallucinogens is discussed.  相似文献   

8.
The effects of acute and repeat administration of the serotonin (5-HT)(1) agonists TFMPP [N -(3-trifluoromethyl)phenylpiperazine hydrochloride] and CGS12066B [7-trifluoromethyl-4- (4-methyl-1-piperazinyl)pyrrolo[1,2-a ]-quinoxaline dimaleate] were evaluated on 5-HT synthesis rates using the alpha-[(14) C]methyl-l-tryptophan (alpha-MTrp) autoradiographic method. In the acute treatment study, TFMPP (10 mg/kg) and CGS12066B (5 mg/kg) were injected intraperitoneally 30 min before an alpha-MTrp injection. In an acute study TFMPP reduced overall brain 5-HT synthesis, in the dorsal and median raphe, and in almost all of their projection areas, with the exception of the parietal, sensory-motor, and frontal cortices, the accumbens nucleus, and the caudate. Acute CGS12066B treatment did not have overall significant effect, but the rates did decrease in the cell body areas of 5-HT neurons. In a 7-day treatment with TFMPP (10 mg/kg/day) or CGS12066B (5 mg/kg/day), the 5-HT synthesis rates (24 h after last dose) decrease, with both compounds, in almost all of the nerve terminal structures. TFMPP reduced the synthesis in the dorsal and median raphe, while CGS12066B reduced it only in the dorsal raphe. This data suggests that after a 7-day treatment with TFMPP and CGS12066B, the rate of 5-HT synthesis in the dorsal raphe is restored and is reduced in many projection areas. The observed effects in the 7-day treatment could also be related to actions through the postsynaptic 5-HT(1B) sites and/or other 5-HT receptors since this compounds have limited selectivity.  相似文献   

9.
L W Rogers  J Giordano 《Life sciences》1990,47(11):961-969
We have recently shown the serotonin 5-HT1A receptor agonist buspirone to produce analgesia in several pain tests in rats. As a 5-HT1A agonist, buspirone may change serotonergic (5-HT) tone to alter the balance of central monoaminergic (MA) systems that function in analgesia. MA-reuptake blocking drugs have been shown to produce analgesia, both when given alone and in combination with a variety of other agents, presumably via their action upon MA neurochemistry. The present study was undertaken to examine the effect of systemic administration of the 5-HT-reuptake blocker amitriptyline (AMI: 10 mg/kg), NE-reuptake blocker desipramine (DMI: 10 mg/kg) or DA-reuptake blocker GBR-12909 (7.5 mg/kg) on patterns of analgesia produced by buspirone (1-5 mg/kg) in thermal and mechanical pain tests in rats. Neither reuptake blocking agents or buspirone, when administered alone or in combination, produced overt changes in motor activity at the doses tested. AMI alone was not analgesic in either thermal or mechanical pain tests. In both assays, AMI reduced the analgesic action of buspirone, with greater effects seen in the thermal test. When administered alone, DMI produced significant analgesia against thermal and mechanical pain. DMI significantly attenuated the analgesic action of all doses of buspirone in both pain tests. Alone, GBR-12909 did not affect nociception in thermal or mechanical tests. GBR-12909 decreased buspirone-induced analgesia at all doses in the thermal test, while having no effect on buspirone-induced analgesia against mechanical pain. These results demonstrate that facilitation of 5-HT, NE and DA function with reuptake blocking drugs did not enhance the analgesic action of buspirone. These data indicate against the adjuvant use of reuptake blocking compounds and buspirone as analgesics. Furthermore, such findings may suggest other possible non-MA substrates of buspirone-induced analgesia.  相似文献   

10.
The rate of 5-HT synthesis was determined in discrete rat brain regions 4 days after a single dose of reserpine (10 mg/kg) or reserpine carrier (controls), using an autoradiographic method with labelled -methyl-L-tryptophan as a tracer. The results show that the rate of 5-HT synthesis was unchanged in the dorsal and median raphe, significantly decreased in the raphe magnus, and significantly increased in areas rich in serotonergic nerve terminals (i.e., hypothalamus, hippocampus, median geniculate body, parietal and visual cortices). An increase in tryptophan hydroxylase activity could account for the increase in the rate of serotonin synthesis seen in some regions. Since the 5-HT synthesis rate showed regional variability there seems to be a need for regional studies of the effect of drugs on the 5-HT synthesis. In addition, the 5-HT synthesis rate was not significantly different from that in controls in many of the brain regions.  相似文献   

11.
Here we have used the brain microdialysis method to test the effect of the 5-HT precursor L-tryptophan on 5-HT release. The release of endogenous 5-HT was measured in ventral hippocampus of the anesthetized rat both under basal conditions and when serotoninergic neuronal activity was raised by electrical stimulation of the dorsal raphe nucleus (DRN). Low frequency electrical stimulation of the DRN evoked a frequency-dependent (2-10 Hz) release of hippocampal 5-HT. The electrically evoked release of 5-HT was markedly enhanced by pretreatment with L-tryptophan (50 and 100 mg/kg i.p.). The effect of L-tryptophan on evoked release of 5-HT was dose-related, detectable at low (2 Hz) stimulation frequencies, and became stronger as the stimulation frequency increased. L-Tryptophan (10, 50 and 100 mg/kg i.p.) had no effect on basal output of 5-HT. We conclude from these findings that elevation of 5-HT precursor availability increases 5-HT release in hippocampus in vivo under conditions of increased serotoninergic neuronal activity.  相似文献   

12.
In cerebral cortex and lateral septal nuclei different serotonergic receptor subtypes coexist, thus a different action on neuronal firing may be expected depending on the receptor activated. Dorsal raphe nucleus stimulation produced an increased rate of firing in cortical layer V, and in lateral septal nuclei. However, firing rate in cortical layer VI remained unchanged after stimulating the dorsal raphe nucleus. Clomipramine is a tricyclic which exerts its main actions on serotonergic receptors, and long-term treatment with this antidepressant produced a selective increased firing rate in lateral septal neurons, but not in cortical neurons. From an electrophysiological point of view, it is concluded that the excitatory actions on firing rate elicited by dorsal raphe nucleus stimulation or clomipramine treatment are mediated by 5-HT2 receptor subtype activation which is likely to be acting as a 5-HT1A modulator in such places where both receptor subtypes coexist.  相似文献   

13.
LSD (25–50 μg/kg, i.v.) significantly decreased the firing rate of 78% of the dopamine-containing neurons in the substantia nigra of chloral hydrate anesthetized rats. In a subgroup of neurons (22%), LSD either had no clear effect or caused a slight excitation. On the other hand, brom-LSD (100 μg/kg, i.v.), a non-hallucinogenic congener of LSD, had no effect on 71% of dopaminergic cells and slightly reduced the firing rate with 29% of the units. Pretreatment with haloperidol (0.1 mg/kg) blocked the inhibitory effects of LSD, and haloperidol injected following LSD reversed its depressive effects. Non-dopaminergic neurons in the region of the substantia nigra typically showed large increases in firing rate in response to LSD administration. The inhibitory effects of LSD on dopamine-containing neurons are probably not attributable to the serotonergic properties of LSD, since 5-methoxy N,N dimethyltryptamine (25–100 μg/kg), which has central serotonergic properties similar to those of LSD, produced exclusively excitatory effects on the firing rate of dopaminergic cells. These electrophysiological results are consistent with recent behavioral and neurochemical data which suggest that LSD can act as a dopamine agonist in the CNS.  相似文献   

14.
Abstract: The characteristics of the serotonin (5-HT) output in the dorsal and median raphe nuclei of the rat were studied using in vivo microdialysis. The basal output of 5-HT increased after KC1 was added to the perfusion fluid. In contrast, neither the omission of calcium ions nor the addition of 0.5 nM tetrodotoxin affected dialysate 5-HT or 5-hy-droxyindoleacetic acid (5-H1AA). Reserpine did not decrease the output of 5-HT and 5-HIAA 24 h later and p-chloroamphetamine increased 5-HT in both vehicle- and reserpine-treated rats severalfold. 8-Hydroxy-2-(di-n-pro-pylamino)tetralin (8-OH-DPAT), at 1 or 10 μM, perfused into the raphe did not change the outputs of 5-HT or 5-HIAA. Higher doses (0.1, Land 10 mM) increased extracellular 5-HT in the raphe, probably via an inhibition of uptake. In animals bearing two probes (raphe nuclei and ventral hippocampus), only the 10 vaM dose of 8-OH-DPAT perfused into the raphe decreased the hippocampal output of 5-HT and 5-HIAA. The systemic injection of 0.1 mg/kg 8-OH-DPAT decreased dialysate 5-HT and 5-HIAA in the raphe and hippocampus. These results suggest that extracellular 5-HT in raphe nuclei originates from a cytoplasmic pool and is not dependent on either nerve impulse of 5-HT neurons or local activation of 5-HT1A receptors.  相似文献   

15.
Single neuron firing rate was recorded from dorsal raphe nucleus of anesthetized rats. The firing rate of raphe neurons varied from 4 to 8 discharge per second before drug administration and this neuronal activity was decreased by L-701,324 (2 mg/kg i.v. injection), a competitive antagonist of glycineB binding site of N-methyl-D-aspartate (NMDA) receptors. The glycine transporter type-1 (GlyT1) antagonists Org-24461 (10 mg/kg i.v.) and NFPS (3 mg/kg i.v.) reversed the inhibitory effect of L-701,324 on single neuron activity recorded from dorsal raphe nucleus of the rat. Org-24461 and NFPS both tended to increase the raphe neuronal firing rate also when given alone but their effect was not significant. This finding serves further evidence that glutamate released from axon terminals of the cortico-striatal projection neurons stimulates serotonergic neurons in the raphe nuclei and this effect is mediated at least in part by postsynaptic NMDA receptors. Thus, GlyT1 inhibitors are able to reverse the hypofunctional state of NMDA receptors, suggesting that these drugs may have beneficial therapeutic effects in neurological and psychiatric disorders characterized with impaired NMDA receptor-mediated transmission.  相似文献   

16.
17.
Abstract: The contribution of NMDA receptors to regulation of serotonin (5-HT) release was assessed by in vivo microdialysis in freely behaving rats. During infusion of NMDA (30, 100, and 300 µ M ) into the dorsal raphe nucleus (DRN), 5-HT was increased by ∼25, 100, and 280%, respectively. Competitive and noncompetitive NMDA-receptor antagonists blocked this effect on DRN 5-HT. Infusion of NMDA (300 µ M ) into the DRN also produced an 80% increase in extracellular 5-HT in the nucleus accumbens. During infusion of NMDA (100 and 300 µ M ) into the median raphe nucleus (MRN), 5-HT was increased by ∼15 and 80%, respectively. NMDA-receptor antagonists blocked this effect on MRN 5-HT. Infusion of NMDA into the MRN also produced a significant increase in hippocampal 5-HT. In contrast, infusion of NMDA into the nucleus accumbens, frontal cortex, or hippocampus produced small decreases in 5-HT in these forebrain sites. Taken together, these results suggest that NMDA receptors in the midbrain raphe, but not the forebrain, can have an excitatory influence on 5-HT neurons and, thus, produce increased 5-HT release in the forebrain. Furthermore, in comparison with the MRN, DRN 5-HT neurons were more sensitive to the excitatory effect of NMDA.  相似文献   

18.
Depletion of telencephalic serotonin (5-HT) content by medical forebrain bundle lesions, which interrupt the ascending serotonergic pathways or by DL-p-chlorophenylalanine produces an increased sensitivity to pain as measured by the flinch-jump, stabilimetric, or hot-plate methods. Examination of the effects of a number of other lesions and drugs indicated that dopamine, norepinephrine and acetylcholine are not involved in pain sensitivity. Dosages of 75 mg/kg DL-5-hydroxytryptophan(5-HTP), 37.5 mg/kg L-5-HTP or 50 mg/kg Ro 4-4602 (NI-(DL-seryl)-N2-(2,3,4-trihydroxybenzyl)hydrazine) plus 37.5 mg/kg L-5-HTP administered to medical forebrain bundle lesioned rats returned both the telencephalic content of 5-HT and the pain threshold to normal values. Injection of 37.5 mg/kg of D-5-HTP or an equimolar dose of L-dopa had no effect on pain threshold. Normal animals display increased sensitivity to pain and decreased 5-HT contents in frontal pole, hippocampus, and amygdala during dark as compared to light hours. All three of these telencephalic areas are innervated by the ascending serotonergic pathways, and cells in these areas show inhibition of firing following the iontophoretic application of 5-HT. Taken together these data suggest that the serotonergic system normally acts to inhibit the effects of painful stimuli. A review of a variety of behavioral effects of 5-HT depletion including an enhanced response to lysergic acid diethylamide and amphetamine suggests that the ascending serotonergic system may have a general role in the inhibition of arousal, rather than a specific role with respect to various categories of behavior.  相似文献   

19.
Daily variations in the pharmacokinetics of imipramine (IMI) could contribute to circadian phase-dependent effects of the drug. Therefore, the chronopharmacokinetics of IMI and its metabolite, desipramine (DMI), were studied after single and chronic application. Male rats were synchronized to a 12:12 hour lightdark (L:D) regimen with lights on from 07:00 to 19:00 (dark, 19:00-07:00). In single-dose experiments rats were injected with IMI (10 mg/kg) i.p. or i.v. at 07:30 or 19:30 and groups of rats were killed 0-22 hours thereafter. After chronic application of IMI in drinking water (≈ 15 mg/kg/d) groups of rats were killed during the 14th day of treatment at 02:00, 08:00, 14:00, and 20:00, respectively. Brain and plasma concentrations of IMI and DMI were determined by reversed-phase high-performance liquid chromatography with ultraviolet detection. After single i.p. application of IMI, maximal brain concentrations (Cmax) of IMI and DMI were nearly twofold higher in darkness (IMI, 4.8 μg/g; DMI, 1.8 μg/g) than in light (IMI, 2.85 Mg/g; DMI, 0.85 Mg/g). Also, the area under the curve (AUC) (0-22 hours) was about 1.6-fold greater in darkness than in light for IMI and DMI; half-lives were not circadian phase dependent. After i.v. injection of IMI, the AUC in brain was also about 30% greater in darkness than in light. After chronic application of IMI in drinking water, brain concentrations of IMI and DMI varied more than threefold within 24 hours. The data demonstrate that the pharmacokinetics of IMI and DMI are circadian phase dependent. It is assumed that circadian variations in drug distribution are more likely to contribute to the drug's chronopharmacokinetics than variations in the drug's metabolism. The 24-hour variations in the drug's concentrations after chronic IMI application in drinking water can be explained by the drinking behavior of the rats, which by itself is altered by IMI.  相似文献   

20.
It is shown that a selective agonist of 5-HT1A receptors 8-OH-DPAT in a low dose (0.1 mg/kg), which is known to affect mainly the presynaptic 5-HT1A receptors increased the immune response at the peak of reactions (the forth or fifth day after immunization with sheep red blood cells - SRBC) in CBA mice and Wistar rats. Treatment of the animals with the drug 15 min prior to antigen injection raised the number of plaque-forming cells (lgM-PFC) and rosette-forming cells (RFC) in the spleen. The preliminary blockade of 5-HT1A receptor with a selective antagonist of 5-HT1A receptors WAY-100635 (0.1 mg/kg) prevented the immunostimulating effect of 5-HT 1A receptors agonist 8-OH-DPAT, whereas WAY-100635 administration alone in the same dose didn't change the immune response. Activation of 5-HT1A receptors under conditions of electrical lesion of 5-HTergic neurons of the nucleus raphe was unable to enhance the immune reactions, as it did in sham-operated rats. The data obtained indicate that the somatodendric 5-HT1A autoreceptors are involved in immunomodulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号