首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high degree of ATP hydrolytic activity present in purified rat pancreatic acinar cells was localized to plasma membranes. This activity was stimulated almost equally by Mg2+ or Ca2+. Kinetic analysis revealed that the enzyme had a higher affinity for Ca2+ (Kd = 1.73 microM) than Mg2+ (Kd = 2.98 microM) but a similar maximal rate of activity. A comparison of substrate requirements revealed very similar profiles for the Mg2+- and Ca2+-stimulated activities. Combinations of saturating concentrations of Mg2+ or Ca2+ produced the same degree of maximal activity. Investigation of the partial reactions of the ATPase activity revealed two phosphoprotein intermediates (Mr = 115,000 and 130,000) in the presence of Ca2+ and Mg2+. A significant stimulation of the Ca2+-ATPase activity by calmodulin was observed (Kd = 0.7 microM). Calmodulin increased the Ca2+-sensitivity of this enzyme system; Mg2+ appeared to be required for this effect. The Ca2+-ATPase activity was also stimulated by acidic phospholipids. Using an 125I-labeled calmodulin gel overlay technique, calmodulin was shown to bind in a Ca2+-dependent fashion to 133,000- and 230,000-dalton proteins present in the plasma membrane-enriched fraction. Under conditions that favor Ca2+-dependent kinase activity, calmodulin enhanced the phosphorylation of a 30,000- and 19,000-dalton protein. The major ATP hydrolytic activity in pancreatic acinar plasma membranes was present as an ectoenzyme.  相似文献   

2.
Askerlund P 《Plant physiology》1996,110(3):913-922
The effect of controlled trypsin digestion of a calmodulin-stimulated Ca2+-ATPase in low-density intracellular membranes from cauliflower (Brassica oleracea L.) inflorescences was investigated. Ca2+ uptake into vesicles was measured either continuously with the fluorescent Ca2+ indicator Calcium Green-5N or with a radio-active filter technique. Trypsin treatment of vesicles resulted in a 3-fold activation of Ca2+ uptake and loss of calmodulin sensitivity. Immunoblotting experiments with an antiserum raised against the Ca2+-ATPase showed that the trypsin activation was accompanied by a decrease in the amount of intact Ca2+-ATPase (111 kD) and by successive appearances of polypeptides of 102 and 99 to 84 kD. 125I-Calmodulin overlays showed that only the intact Ca2+-ATPase bound calmodulin. Removal of the calmodulin-binding domain (about 9 kD) was not enough to obtain full activation. Trypsin proteolysis resulted in a Ca2+ concentration necessary for half-maximal activity of 0.5 [mu]M, whereas a value of about 2 [mu]M was obtained with untreated membranes in the presence of calmodulin. Without trypsin treatment or calmodulin the activity was not saturated even at 57 [mu]M free Ca2+. The data suggest that trypsin digestion and calmodulin activate the cauliflower Ca2+-ATPase by at least partly different mechanisms.  相似文献   

3.
Membrane-bound Ca2+-ATPases are responsible for the energy-dependent transport of Ca2+ across membrane barriers against concentration gradients. Such enzymes have been identified in sarcoplasmic reticulum of muscle tissues and in non-muscle cells in both surface membranes and endoplasmic-reticulum-like intracellular membrane complexes. In a previous study using membrane fractionation by density-gradient and free-flow electrophoresis, we reported that the intracellular membranes of human blood platelets were a major storage site for Ca2+ and involved in maintaining low cytosol [Ca2+] in the unactivated cell. In the present report we demonstrated that the intracellular membranes also exhibit a high-affinity Ca2+-ATPase which appears to be kinetically associated with the Ca2+-sequestering process. We found that both the surface membrane and the intracellular membrane exhibited a basal Mg2+-ATPase activity, but Ca2+ activation of this enzyme was confined only to the intracellular membrane. Use of Ca2+-EGTA buffers to control the extravesicle [Ca2+] allowed a direct comparison of the Ca2+-ATPase and the Ca2+-uptake process over a Ca2+ range of 0.01 microM to 1.0 mM, and it was found that both properties were maximally expressed in the range of external [Ca2+] 1-50 microM, with concentrations greater than 100 microM showing substantial inhibition. Double-reciprocal plots for the Ca2+-ATPase activity and Ca2+ uptake gave apparent Km values for Ca2+ of 0.15 and 0.13 microM respectively. However, similar plots for ATP with the enzyme revealed a discontinuity (two affinity sites, with Km 20 and 145 microM), whereas plots for the Ca2+ uptake gave a single Km value for Ca2+, 1.1 microM. Phosphorylation studies during Ca2+ uptake using [gamma-32P]ATP revealed two components of 90 and 95 kDa phosphorylated at extravesicle [Ca2+] of 3 microM. The Ca2+-ATPase activity, Ca2+ uptake and phosphorylation were all almost completely inhibited in the presence of 500 microM-Ca2+. Similar studies using mixed membranes revealed four other phosphoproteins (50, 40, 20 and 18 kDa) formed in addition to the 90 and 95 kDa components. The findings are discussed in the context of platelet Ca2+ mobilization for function and the mechanisms whereby Ca2+ homoeostasis is controlled in the unactivated cell.  相似文献   

4.
A calmodulin inhibitor, trifluoperazine, suppresses ATP-dependent Ca2+ uptake into microsomes prepared from bovine aortic smooth muscle. From this microsomal preparation which we expected to contain calmodulin-dependent Ca2+-transport ATPase [EC 3.6.1.3], we purified (Ca2+-Mg2+)ATPase by calmodulin affinity chromatography. The protein peak eluted by EDTA had calmodulin-dependent (Ca2+-Mg2+)ATPase activity. The major band (135,000 daltons) obtained after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accounted for about 80% of the total protein eluted. This major band was phosphorylated by [gamma-32P]ATP in a Ca2+-dependent manner. All the 32P incorporated into the major band was released by hydroxylaminolysis. The ATPase reconstituted in soybean phospholipid liposomes showed ATP, calmodulin-dependent Ca2+ uptake. The affinity of the ATPase for Ca2+, Km, was 7 microM and the maximum ATPase activity was 1.4 mumol/mg/min. These values were changed to 0.17 microM and 3.5 mumol/mg/min, respectively by the addition of calmodulin. The activity of the purified (Ca2+-Mg2+)ATPase was inhibited by orthovanadate, and the concentration required for half-maximal inhibition was about 1.8 microM which is close to that of plasma membrane ATPases. Judging from the effect of orthovanadate and the molecular weight, the purified (Ca2+-Mg2+)ATPase was considered to have originated from the plasma membrane not from the sarcoplasmic reticulum.  相似文献   

5.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min . mg)-1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min . mg)-1. When incubated in the presence of Mg[gamma-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 microM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   

6.
An intracellular (ATP + Mg2+)-dependent Ca2+ pumping mechanism has been identified and characterized within the cultured clonal neuroblastoma cell line N1E-115. Using cell suspensions treated with 0.005% saponin which selectively permeabilizes the plasma membrane in 95-98% of the cells, it was possible to show clearly that the intracellular Ca2+ pump mechanism is of non-plasma membrane origin and therefore can be compared directly with the Ca2+ pump characterized in detail in synaptosomal membrane vesicles (Gill, D. L., Grollman, E. F., and Kohn, L. D. (1981) J. Biol. Chem. 256, 184-192; Gill, D. L., Chueh, S. H., and Whitlow, C. L. (1984) J. Biol. Chem. 259, 10807-10813) which was proven by flux reversal studies to be derived from the neural plasma membrane (Gill, D. L. (1982) J. Biol. Chem. 257, 10986-10990). The intracellular Ca2+ pump in N1E-115 cells is distinct from mitochondrial Ca2+ accumulation and is increased up to 8-fold higher as cells reach confluency. In similarity to the neural plasma membrane pump, the intracellular Ca2+ pump within N1E-115 cells has high affinity for Ca2+ (Km = 0.28 microM), is dependent on both ATP (Km = 26 microM) and either Mg2+ or Mn2+ which half-maximally activate Ca2+ pumping at 0.35 mM and 0.32 mM, respectively, and shows similar specificity for Sr2+ and Ba2+ which half-maximally inhibit Ca2+ transport at 50 microM and 1.5 mM, respectively. In contrast to the neural plasma membrane pump, the intracellular Ca2+ pump displays approximately 40-fold higher sensitivity to La3+ (IC50 = 5 microM) and an apparent 400-fold lower sensitivity to VO4(3-) (IC50 = 185 microM), although the inhibitory effectiveness of VO4(3-) is increased 37-fold by a 15-min preincubation of the permeabilized cells with VO4(3-) in the absence of ATP (apparent IC50 = 5 microM). In further contrast to the neural plasma membrane Ca2+ pump, the intracellular pump within N1E-115 cells is stimulated more than 20-fold by oxalate (giving prolonged linear Ca2+ accumulation), is resistant to low saponin concentrations, and is not modified by calmodulin even after extensive treatment with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and/or calmodulin antagonist drugs. However, calmidazolium is effective in inhibiting the intracellular Ca2+ pump with an IC50 of approximately 2 microM.  相似文献   

7.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

8.
A Tripathy  L Xu  G Mann    G Meissner 《Biophysical journal》1995,69(1):106-119
The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channel's regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.  相似文献   

9.
Two major Ca2+ transport mechanisms co-function in a preparation of synaptosomal plasma membrane vesicles: an (ATP + Mg2+)-dependent Ca2+ pump, and a reversible Na+-Ca2+ exchanger (Gill, D. L., Grollman, E.F., and Kohn, L. D. (1981) J. Biol. Chem. 256, 184-192). An accurate comparative analysis of the kinetics of the two Ca2+ transporters under free Ca2+ conditions precisely buffered with EGTA, reveals that both mechanisms have high affinity for Ca2+. The ATP-dependent Ca2+ pump displays simple saturation kinetics with a Km for Ca2+ of 0.11 microM and a Vmax of 2.2 nmol/min/mg of protein. In contrast, the Na+-Ca2+ exchanger has a complex dependence on free Ca2+, the activity continuing to saturate over a wide range of free Ca2+ concentrations from 0.03 microM to 3 mM. The curvilinear Eadie-Hofstee analysis reveals a distinct high affinity component for the exchanger with a Km for Ca2+ of approximately 0.5 microM, and a lower affinity component not accurately resolvable into a discrete Km value. 2 mM amiloride blocks Na+-Ca2+ exchange-mediated Ca2+ uptake by 90% over a wide range of free Ca2+ (0.3-3000 microM), suggesting a similar noncompetitive inhibition of both low and high affinity Ca2+ sites. Ca2+ accumulated in vesicles via either the Ca2+ pump or Na+-Ca2+ exchanger is rapidly (in less than 1 min) released by 0.1% saponin (w/v), although a minor component (8-10%) of Ca2+ pump activity is resistant to saponin addition. The IC50 for the effect of saponin is the same (0.01%, w/v) for both Ca2+ transport mechanisms. The ATP-dependent Ca2+ pump is shown to be highly sensitive to vanadate inhibition (Ki = 0.5 microM). The high saponin sensitivity of both Ca2+ transporters and the potent effect of vanadate on Ca2+ pumping, together with previous Na+ channel and Na+ pump flux studies in the same membrane vesicles (Gill, D. L. (1982) J. Biol. Chem. 257, 10986-10990), all strongly suggest that both of the high affinity Ca2+ transporters function in the plasma membrane where they are of major functional importance to the regulation of intrasynaptic free Ca2+ levels.  相似文献   

10.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

11.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

12.
A purified preparation of kidney basolateral membrane vesicles is capable of ATP-dependent Ca2+ uptake. The reaction has high affinity for Ca2+ (Km about 0.1 microM) and a V of 5.8 nmol Ca2+ X mg-1 protein X min-1 in the predominantly right-side-out vesicular preparation used. It is inhibited by vanadate (K0.5 about 5 microM) and by anti-calmodulin drugs. A stimulatory effect of calmodulin is visible in membranes depleted of the activator. Exposure of basolateral membranes to 125I-azido-modified calmodulin results in the specific labeling of a membrane protein of Mr 141 000, which is tentatively suggested to be the Ca2+-pumping ATPase.  相似文献   

13.
The effects of Ca2+ and calmodulin on endogenously catalyzed ADP-ribosylation were investigated in adipocyte plasma membranes. Four specific proteins of 70, 65, 61 and 52 kDa were labeled with [32P]ADP-ribose and ADP-ribosylation of the proteins was highly dependent upon the conditions employed. ADP-ribosylation of the 70 kDa protein was observed only in membranes supplemented with Ca2+. Maximal incorporation of [32P] into the protein was achieved with free Ca2+ concentrations of 90 microM. Calcium-stimulated ADP-ribosylation of the 70 kDa protein was inhibited by calmodulin. Half-maximal inhibition was observed in membranes incubated with 1.2 microM calmodulin. The effect of calmodulin was characterized by an inhibition of the incorporation of [32P]ADP-ribose as opposed to a stimulation of its removal. ADP-ribosylation of the 61 kDa protein was not altered by added Ca2+ and/or calmodulin whereas ADP-ribosylation of the 65 kDa protein was partially (50%) inhibited by free Ca2+ concentrations between 10(-6) - 10(-5) M. These results provide evidence that the adipocyte plasma membrane contains ADP-ribosyltransferase activities and demonstrate that ADP-ribosylation of a 70 kDa protein is regulated by Ca2+ and calmodulin.  相似文献   

14.
Cyclic nucleotide phosphodiesterase in the plasma membranes of bovine epididymal spermatozoa was stimulated by added Ca2+ and calmodulin. The rate of hydrolysis and responsiveness toward calmodulin was greater for cAMP than for cGMP. The kinetic analysis of the activity revealed two forms of phosphodiesterase with apparent Km values of 7.5 and 95 microM for cAMP. Calmodulin stimulated both of the activities by increasing the Vmax without affecting the Km's. The activity response with respect to Ca2+ concentration appears to be biphasic in both the absence and presence of added calmodulin. Trifluoperazine inhibited the Ca2+- and calmodulin-sensitive enzyme activity in a dose-dependent manner. The calmodulin-stimulated phosphodiesterase activity in the sperm plasma membranes can be solubilized and absorbed to a Calmodulin-Sepharose affinity column in the presence of Ca2+.  相似文献   

15.
The activity of Ca-pump in inside-out oriented vesicles obtained from erythrocyte membranes after their 30 min treatment with EGTA at 20 degrees C (membranes A) and 37 degrees C (membranes B) was investigated. It was shown that in membranes A placed into an incubation medium containing 0.1 mM EGTA (pH 7.4) the overall effect of exogenous calmodulin is due to the increase in the maximal activity of the enzyme, its affinity for Ca2+ being unaffected thereby. In membranes B placed into the same medium (pH 6.75) the activation of the Ca-pump by calmodulin is due to the increased affinity for Ca2+ at a constant maximal activity of the enzyme. The dependencies of the value of the calmodulin-stimulated component of membranes A and the Ca2+-binding capacity of calmodulin measured by the intensity of N-phenyl-1-naphthylamine fluorescence on the concentration of free Ca2+ are coincident. In the case of membranes B, the stimulation of Ca-pump by calmodulin occurs at much lower Ca2+ concentrations than the Ca2+ binding-induced conformational shifts in calmodulin. The experimental results suggest that the affinity of the Ca-pump for Ca2+ may affect calmodulin existing in a Ca2+-independent state. The hydrophobic interactions between the Ca-calmodulin complex and the Ca-ATPase molecule are apparently essential for the regulation of the maximal enzyme activity.  相似文献   

16.
In this work we report an unusual pattern of activation by calmodulin on the (Ca2+ + Mg2+)-ATPase from basolateral membranes of kidney proximal tubule cells. The activity of the ATPase depleted of calmodulin is characterized by a high Ca2+ affinity (Km = 2.2-3.4 microM) and a biphasic dependence on ATP concentration. The preparation responded to the addition of calmodulin by giving rise to a new Ca2+ site of very high affinity (Km less than 0.05 microM). Calmodulin antagonists had diverse effects on ATPase activity. Compound 48/80 inhibited calmodulin-stimulated activity by 70%, whereas calmidazolium did not modify this component. In the absence of calmodulin, 48/80 still acted as an antagonist, increasing the Km for Ca2+ to 5.7 microM and reducing enzyme turnover by competing with ATP at the low affinity regulatory site. Calmidazolium did not affect Ca2+ affinity, but it did displace ATP from the regulatory site. At fixed Ca2+ (30 microM) and ATP (5 mM) concentrations, Pi protected against 48/80 and potentiated inhibition by calmidazolium. At 25 microM ATP, Pi protected against calmidazolium inhibition. We propose that the effects of ATP and Pi arise because binding of the drugs to the ATPase occurs mainly on the E2 forms.  相似文献   

17.
As a first step to elucidate the involvement of calmodulin in Ca2+-dependent regulation of ciliary motility, molecular species and properties of calmodulin-binding proteins (CaMBPs) in Tetrahymena cilia were investigated by a modified [125I]calmodulin overlay method. At least 36 kinds of CaMBPs were detected. All the CaMBPs bound to calmodulin in Ca2+-dependent and calmodulin-specific manners, but they showed different Ca2+-dependencies. Several of CaMBPs bound to calmodulin in the presence of 100 microM trifluoperazine, several did in the presence of 8 M urea, and a few of them were highly sensitive to trypsin digestion. Among these CaMBPs, we noticed a 95 000-dalton (D) CaMBP present in the outerdoublet microtubule fraction, which possessed some attributes of the calmodulin counterpart suggested from the results of our previous paper [12]. We discussed a possibility that this protein might correspond to one of the protein components of the interdoublet link.  相似文献   

18.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

19.
Sarcolemmal membranes were isolated from porcine skeletal muscle by modifications of a LiBr-extraction technique. Latency determinations of acetylcholinesterase, ouabain-sensitive p-nitrophenylphosphatase, [3H]ouabain binding, and (Na+ + K+)-ATPase activities indicated that 65-76% of the membranes were sealed inside-out vesicles. The preparations were enriched in cholesterol and phospholipid, and demonstrated adenylate cyclase activity and both cAMP and cGMP phosphodiesterase activities. An indication of the purity of this fraction was that the Ca2+-ATPase activity (0.13 mumol Pi mg-1 min-1 at 37 degrees C) was 3.8% of that of porcine skeletal muscle sarcoplasmic reticulum preparations. Pertussis toxin specifically catalyzed the ADP-ribosylation of a Mr 41,000 sarcolemmal protein, indicating the presence of the inhibitory guanine nucleotide regulatory protein of adenylate cyclase, Ni. An endogenous ADP-ribosyltransferase activity, with several membrane protein substrates, was also demonstrated. The addition of exogenous cAMP-dependent protein kinase or calmodulin promoted the phosphorylation of a number of sarcolemmal proteins. The calmodulin-dependent phosphorylation exhibited an approximate K 1/2 for Ca2+ of 0.5 microM, and an approximate K 1/2 for calmodulin of 0.1 microM. 125I-Calmodulin affinity labeling of the sarcolemma, using dithiobis(succinimidyl propionate), demonstrated the presence of Mr 160,000 and 280,000 calmodulin-binding components in these membranes. These results demonstrate that this porcine preparation will be valuable in the study of skeletal muscle sarcolemmal ion transport, protein and hormonal receptors, and protein kinase-catalyzed phosphorylation.  相似文献   

20.
A Ca2(+)-pumping ATPase has been characterized in rat hepatocyte plasma membranes. The enzyme has high Ca2+ affinity, and properties typical of a P-type ion pump. At variance with the Ca2+ pumps of other eukaryotic plasma membranes, it is not stimulated by calmodulin. The steady state concentration of the phosphoenzyme formed in the presence of ATP is increased by La3+. The enzyme cross-reacts with a monoclonal antibody (mAb-5F10) raised against the human erythrocyte Ca2+ pump. The enzyme has been purified using a mAb-5F10 antibody affinity column. CNBr digestion of the isolated protein has yielded two peptides which have been sequenced. One of them matches perfectly a sequence contained in the erythrocyte Ca2+ pump, the other is very homologous to another domain in the erythrocyte pump. In spite of the absence of calmodulin stimulation, 125I-calmodulin overlay experiments on the purified liver ATPase under denaturing conditions have revealed that the enzyme binds calmodulin even more strongly than the erythrocyte pump. Immunocytochemical experiments on liver slices using the mAb-5F10 antibody have shown that the enzyme is located predominantly in the blood sinusoidal domain of the hepatocyte plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号