首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of seven enzymes connected with energy-supplying metabolism was followed from the second day of life till adulthood (87th day). The enzymes selected were: 1. Triosephosphate dehydrogenase (TPDH), 2. Lactate dehydrogenase (LDH), 3. Glycerol-3-phosphate: NAD dehydrogenase (GPDH), 4. Hexokinase (HK), 5. Malate: NAD dehydrogenase (MDH), 6. Citrate syntase (CS) and 7. 3-Hydroxyacyl Co A dehydrogenase. Although some variations occurred, the enzyme profiles were characteristic of those of the nervous tissue from the second day of life onwards until adulthood and displayed relatively high activities of HK, CS and MDH and low activities of TPDH, LDH, GPDH and HOADH. The activities of all enzymes studied here increased during postnatal development and some reached adult values on the 14th day, that of TPDH on the 27th day and HOADH on the 41st day of life. The activities of MDH and GPDH did not attain the adult values still on the 41st day of life. The anaerobic energy supply capacity seems to increase transiently on the 31st day of life, i.e. at a developmental stage where the resistance against hypoxia is known to increase transiently.  相似文献   

2.
The effect of DL -lipoic acid on the nephrotoxic potential of gentamicin was examined. Intraperitoneal injection of gentamicin (100 mg/kg/day) to rats resulted in decreased activity of the glycolytic enzymes-hexokinase, phosphoglucoisomerase, aldolase and lactate dehydrogenase. The two gluconeogenic enzymes—glucose-6-phosphatase and fructose-1, 6-diphosphatase, the transmembrane enzymes namely the Na+, K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and the brushborder enzyme alkaline phosphatase, also showed decreased activities. This decrease in the activities of ATPases and alkaline phosphatase suggests basolateral and brush border membrane damage. Decreased activity of the TCA cycle enzymes isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH), suggests a loss in mitochondrial integrity. These biochemical disturbances were effectively counteracted by lipoic acid administration. Lipoic acid administration by gastric intubation at two different concentrations (10 mg and 25 mg/kg/day) brought about an increase in the activity of the glycolytic enzymes, ATPases and the TCA cycle enzymes. The gluconeogenic enzymes however showed a further decrease in their activities at both the concentrations of lipoic acid administered. These observations shed light on the nephroprotective action of lipoic acid against experimental aminoglycoside toxicity and the protection afforded at 25 mg/kg/day of lipoic acid was noted to be higher than that at 10 mg level.  相似文献   

3.
The membrane activity of Na+, K(+)-ATPase, Mg2+, Ca(2+)-ATPase, mitochondrial NAD-isocitrate dehydrogenase, mitochondrial and cytosolic L-glycerol-3-phosphate dehydrogenase was determined in the liver and brain of Wistar rats under acute hypoxic hypoxia against the background of preventive taurine administration. It was shown that preliminary taurine treatment prevented a decrease of hypoxia in activity of Na+. K(+)-ATPase and mitochondrial calcium-dependent enzymes, mostly in the liver. Changes in the intracellular calcium content and biomembrane structure have been discussed as the mechanisms of the taurine effect on the enzymes' activity.  相似文献   

4.
Changes in activity of mitochondrial enzymes were studied during the embryonic development of Xenopus laevis.
The following enzymes were determined: malate dehydrogenase (MDH), isocitrate dehydrogenase (NAD+-dependent) (IDH), aspartate aminotransferase (GOT), cytochrome oxidase (COX), succinate dehydrogenase (SDH), rotenone-insensitive NADH cytochrome c reductase (NADH-red) and monoamine oxidase (MAO). IDH is constant throughout the period studied. COX and SDH, two enzymes of the inner membrane, are constant in pregastrula stages, and subsequently decrease significantly. MDH and NADH-red are highly active in the pregastrula stages and decline thereafter, while MAO is undetectable during early development and increases significantly only in the larvae. GOT increases during the cleavage stages, being most active in the gastrula stages, and decreases subsequently.
The results are discussed in the sense of mitochondrial differentiation during the early development of the amphibian embryo.  相似文献   

5.
Long J  Wang X  Gao H  Liu Z  Liu C  Miao M  Liu J 《Life sciences》2006,79(15):1466-1472
Malonaldehyde (MDA) is a product of oxidative damage to lipids, amino acids and DNA, and accumulates with aging and diseases. MDA can possibly react with amines to modify proteins to inactivity enzymes and also modify nucleosides to cause mutagenicity. Mitochondrial dysfunction is a major contributor to aging and age-associated diseases. We hypothesize that accumulated MDA due to mitochondrial dysfunction during aging targets mitochondrial enzymes to cause further mitochondrial dysfunction and contribute to aging and age-associated diseases. We investigated the effects of MDA on mitochondrial respiration and enzymes (membrane complexes I, II, III and IV, and dehydrogenases, including alpha-ketoglutaric dehydrogenase (KGDH), pyruvate dehydrogenase (PDH), malate dehydrogenase (MDH)) in isolated rat liver mitochondria. MDA showed a dose-dependent inhibition on mitochondrial NADH-linked respiratory control ratio (RCR) and ADP/O ratio declined from the concentrations of 0.2 and 0.8 micromol/mg protein, respectively, and succinate-linked mitochondrial RCR and ADP/O ratio declined from 1.6 and 0.8 micromol/mg protein. MDA also showed dose-dependent inhibition on the activity of PDH, KGDH and MDH significantly from 0.1, 0.2 and 2 micromol/mg protein, respectively. Activity of the complexes I and II was depressed by MDA at 0.8 and 1.6 micromol/mg protein. However, MDA did not affect activity of complexes III and IV in the concentration range studied (0-6.4 micromol/mg protein). These results suggest that MDA can cause mitochondrial dysfunction by inhibiting mitochondrial respiration and enzyme activity, and the sensitivity of the enzymes examined to MDA is in the order of PDH>KGDH>complexes I and II>MDH>complexes III and IV.  相似文献   

6.
Measures in autopsied brains from Alzheimer's Disease (AD) patients reveal a decrease in the activity of alpha-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H(2)O(2) and to probe the mechanism underlying these changes. Since the response to H(2)O(2) is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k. In cells with only 23% of normal E2k protein levels, one-hour treatment with H(2)O(2) decreased KGDHC and increased MDH activity as well as the mRNA level for both cytosolic and mitochondrial MDH. The increase in MDH did not occur in cells with 100% or 46% of normal E2k. Longer treatments with H(2)O(2) inhibited the activity of both enzymes. Glutathione is a major regulator of cellular redox state and can modify enzyme activities. H(2)O(2) converts reduced glutathione (GSH) to oxidized glutathione (GSSG), which reacts with protein thiols. Treatment of purified KGDHC with GSSG leads to glutathionylation of all three KGDHC subunits. Thus, cellular glutathione level was manipulated by two means to determine the effect on KGDHC and MDH activities. Both buthionine sulfoximine (BSO), which inhibits glutathione synthesis without altering redox state, and H(2)O(2) diminished glutathione to a similar level after 24 h. However, H(2)O(2), but not BSO, reduced KGDHC and MDH activities, and the reduction was greater in the E2k-23 line. These findings suggest that the E2k may mediate diverse responses of KGDHC and MDH to oxidants. In addition, the differential response of activities to BSO and H(2)O(2) together with the in vitro interaction of KGDHC with GSSG suggests that glutathionylation is one possible mechanism underlying oxidative stress-induced inhibition of the TCA cycle enzymes.  相似文献   

7.
Effect of doxorubicin on heart mitochondrial enzymes was studied in rats with or without the administration of alpha-tocopherol. Rats were treated with doxorubicin 2.5 mg/kg, ip body wt once a week for 8 weeks. Alpha-tocopherol was co-administered orally for 2 months (400 mg/kg body wt daily). TCA cycle enzyme, NADH-dehydrogenase, cytochrome-C-oxidase and Na+,K(+)-ATPase activities were found to be decreased in doxorubicin treatment. A significant decrease in protease activity was observed with a concomitant increase in mitochondrial protein level. Mitochondrial lipid peroxide level was found to be increased with a decrease in thiol content. Alpha-tocopherol co-administration was found to maintain the mitochondrial enzyme activities as well as the thiol content. The results are discussed with reference to the antioxidant nature of alpha-tocopherol.  相似文献   

8.
Hormonal control of glycerolphosphate dehydrogenase in the rat brain   总被引:7,自引:3,他引:4  
—Following hypophysectomy or adrenalectomy, glycerolphosphate dehydrogenase (GPDH) (EC 1.1.1.8) activity decreased exponentially in the cerebral hemispheres and brain stem of adult male rats. The latter region was more affected than the former. Malate dehydrogenase (EC 1.1.1.40), isocitrate dehydrogenase (EC 1.1.1.42), lactate dehydrogenase (EC 1.1.1.27) and mitochondrial glycerolphosphate dehydrogenase (EC 1.1.95.5) activities remained unchanged. Injection of adrenocorticotrophic hormone or cortisol in hypophysectomized rats or cortisol in adrenalectomized rats restored GPDH activity. Thyroidectomy and gonadectomy had no effect on GPDH activity. Liver GPDH was not decreased by hypophysectomy or adrenalectomy. Muscle GPDH was diminished slightly by adrenalectomy and as much as brain GPDH by hypophysectomy. In young rats GPDH developmental increase in activity was inhibited by hypophysectomy. These results clearly show that brain GPDH activity is specifically regulated by cortisol (and probably closely related corticosteroids).  相似文献   

9.
Abstract: Glycerol phosphate dehydrogenase (GPDH), glucose-6-phosphate dehydrogenase (G6PDH), and lactate dehydrogenase (LDH) activities were determined in Oligodendrocytes, neurons, and astrocytes isolated from the brains of developing rats. The activity of each enzyme was significantly lower in both neurons and astrocytes than in Oligodendrocytes. The GPDH activity in Oligodendrocytes increased more than 4-fold during development, and at 120 days cells of this type had 1.4-fold the specific activity of forebrain homogenates. The G6PDH activities in Oligodendrocytes from 10-day-old rats were 1.4-fold the activities in the forebrain homogenates. The activities of this enzyme in Oligodendrocytes were progressively lower at later ages, such that at 120 days the cells had 0.8 times the specific activities of homogenates. The Oligodendrocytes had 0.6 times the homogenate activities of LDH at 10 days, and this ratio had decreased to 0.2 by 120 days. These enzymes were also measured in myelin isolated from 20-, 60-, and 120-day-old rats. By 120 days the specific activities of G6PDH and LDH in myelin were <8% of the respective activities in homogenates. The GPDH activity in myelin was, however, at least 20% the specific activity in the homogenates, even in the oldest animals. It is proposed that LDH could be used as a marker for oligodendroglial cytoplasm in subfractions of myelin and in myelin-related membrane vesicles.  相似文献   

10.
The loss of muscle weight in the soleus (SOL) and extensor digitorum longus (EDL) muscles was compared after denervation and in the course of reflex muscle atrophy induced by unilateral fracture of metatarsal bones of the paw and local injection of 0.02 ml turpentine oil subcutaneously. This so-called reflex atrophy is significantly greater after 3 days than that after denervation. Seven days after the nociceptive stimulus, reflex and denervation atrophy are grossly similar in both muscles. This also applies in case that the nociceptive stimulus had been repeated on the third day. The EDL:SOL enzyme activities of energy supply metabolism reflect the differences between a glycolytic-aerobic (EDL) and predominantly aerobic type (SOL) of muscle. No consistent changes were found in either type of atrophy after 3 days. In 7 days' denervation, the activity of hydroxyacetyl-CoA-dehydrogenase (HOADH) and citrate synthase (CS) was decreased in the SOL, while glycerolphosphate:NAD dehydrogenase (GPDH) was enhanced. In the EDL, the activity of triosephosphate dehydrogenase (TPDH), GPDH, malate dehydrogenase (MDH), CS and HOADH was decreased. Acid phosphatase (AcP) was greatly increased in both muscles. Seven days after application of the nociceptive stimulus, all enzyme activities were altered in a grossly analogous manner as after denervation.  相似文献   

11.
12.
In the yeast Saccharomyces cerevisiae, plasma membrane H(+)-ATPase is activated by d-glucose. We found that in the absence of glucose, this enzyme forms a complex with acetylated tubulin. Acetylated tubulin usually displays hydrophilic properties, but behaves as a hydrophobic compound when complexed with H(+)-ATPase, and therefore partitions into a detergent phase. When cells were treated with glucose, the H(+)-ATPase-tubulin complex was disrupted, with two consequences, namely (a) the level of acetylated tubulin in the plasma membrane decreased as a function of glucose concentration and (b) the H(+)-ATPase activity increased as a function of glucose concentration, as measured by both ATP-hydrolyzing capacity and H(+)-pumping activity. The addition of 2-deoxy-d-glucose inhibited the above glucose-induced phenomena, suggesting the involvement of glucose transporters. Whereas total tubulin is distributed uniformly throughout the cell, acetylated tubulin is concentrated near the plasma membrane. Results from immunoprecipitation experiments using anti-(acetylated tubulin) and anti-(H(+)-ATPase) immunoglobulins indicated a physical interaction between H(+)-ATPase and acetylated tubulin in the membranes of glucose-starved cells. When cells were pretreated with 1 mm glucose, this interaction was disrupted. Double immunofluorescence, observed by confocal microscopy, indicated that H(+)-ATPase and acetylated tubulin partially colocalize at the periphery of glucose-starved cells, with predominance at the outer and inner sides of the membrane, respectively. Colocalization was not observed when cells were pretreated with 1 mm glucose, reinforcing the idea that glucose treatment produces dissociation of the H(+)-ATPase-tubulin complex. Biochemical experiments using isolated membranes from yeast and purified tubulin from rat brain demonstrated inhibition of H(+)-ATPase activity by acetylated tubulin and concomitant increase of the H(+)-ATP ase-tubulin complex.  相似文献   

13.
The effect of cadmium on the liver-specific activities of NADPH-cytochrome P450 reductase (CPR), malic dehydrogenase (MDH), glyceraldehyde-3-phosphate dehydrogenase (GADPH), and sorbitol dehydrogenase (SDH) was assessed 6, 24, and 48 h after administration of the metal to rats (2.5 mg/kg of body weight, as CdCl2, single ip injection). CPR specific activity increased after 6 h and afterward decreased significantly, while MDH specific activity increased up to 24 h and then remained unchanged. Both SDH and GADPH specific activities reduced after 6 h, the former only a little but the latter much more, and after 24 and 48 h were strongly inhibited. In vitro experiments, by incubating rat liver microsomes, mitochondria, or cytosol with CdCl2 in the pH range 6.0-8.0, excluded cadmium-induced lipid peroxidation as the cause of the reduction in enzyme activity. In addition, from these experiments, we obtained indications on the type of interactions between cadmium and the enzymes studied. In the case of CPR, the inhibitory effect is probably due to Cd2+ binding to the histidine residue of the apoenzyme, which, at physiological pH, acts as a nucleophilic group. In vitro, mitochondrial MDH was not significantly affected by cadmium at any pH, indicating that this enzyme is probably not involved in the decrease in mitochondrial respiration caused by this metal. As for GADPH specific activity, its inhibition at pH 7.4 and above is imputable to the binding of cadmium to the SH groups present in the enzyme active site, since in the presence of dithiothreitol this inhibition was removed. SDH was subjected to a dual effect when cytosol was exposed to cadmium. At pH 6.0 and 6.5, its activity was strongly stimulated up to 75 microM CdCl2 while at higher metal concentrations it was reduced. At pH 7.4 and 8.0, a stimulation up to 50 microM CdCl2 occurred but above this concentration, a reduction was found. These data seem to indicate that cadmium can bind to different enzyme sites. One, at low cadmium concentration, stimulates the SDH activity while the other, at higher metal concentrations, substitutes for zinc, thus causing inhibition. This last possibility seems to occur in vivo essentially at least 24 h after intoxication. The cadmium-induced alterations of the investigated enzymes are discussed in terms of the metabolic disorders produced which are responsible for several pathological conditions.  相似文献   

14.
The purpose of the present study was to compare the ontogenetic development of the activity of myocardial energy-supplying enzymes in two mammalian species, differing significantly in their level of maturation at birth. The animals were investigated during the late prenatal period and 2, 7, 14, 21, 25, 30, 63, 120 and 730 days after birth in the rat and 2, 21, 84 and 175 days in the guinea-pig. The following enzymes were assayed in the right and left ventricular myocardium: lactate dehydrogenase (LDH, lactate uptake and/or formation), triose phosphate dehydrogenase (TPDH, carbohydrate metabolism), glycerol phosphate dehydrogenase (GPDH, glycerol-P shuttle)), hexokinase (HK, glucose phosphorylation), malate dehydrogenase (MDH, tricarboxylic cycle), citrate synthase (CS, tricarboxylic cycle) and hydroxyacyl-CoA dehydrogenase (HOADH, fatty acid breakdown). The rat heart, highly immature at birth, exhibits three different developmental patterns of energy-supplying enzymes, identical in both ventricles: (i) two mitochondrial enzymes of aerobic metabolism (CS, HOADH) and GPDH have a relatively low activity at the end of prenatal life; thereafter their activity steadily increases, approaching the adult levels between the 3rd and 4th postnatal weeks. A significant decrease was observed between the 4th and 24th months. (ii) MDH and LDH: prenatal values were significantly higher as compared with the 2nd postnatal day; after this period the activities increased up to adulthood (4 months) and decreased during senescence. (iii) The activities of HK and TPDH are characterized by only moderate changes during development. HK differs from all other enzymes by the highest prenatal values, which exceed even adult values. In contradiction to the rat heart, the developmental differences in more mature guinea-pig heart were significantly less pronounced. The only ontogenetic differences observed were the lower activities of enzymes connected with aerobic metabolism at the end of the prenatal period. Our results point to possible differences in the development of adaptive metabolic pathways in animals with different levels of maturation at birth.  相似文献   

15.
With succinate as free-energy source, Escherichia coli generating virtually all ATP by oxidative phosphorylation might be expected heavily to tax its ATP generating capacity. To examine this the H(+)-ATPase (ATP synthase) was modulated over a 30-fold range. Decreasing the amount of H(+)-ATPase reduced the growth rate much less than proportionally; the H(+)-ATPase controlled growth rate by < 10%. This lack of control reflected excess capacity: the rate of ATP synthesis per H(+)-ATPase (the turnover number) increased by 60% when the number of enzymes was decreased by 40%. At 15% H(+)-ATPase, the enzyme became limiting and its turnover was increased even further, due to an increased driving force caused by a reduction in the total flux through the enzymes. At smaller reductions of [H(+)-ATPase] the total flux was not reduced, revealing a second cause for increased turnover number through increased membrane potential: respiration was increased, showing that in E.coli, respiration and ATP synthesis are, in part, inversely coupled. Indeed, growth yield per O2 decreased, suggesting significant leakage or slip at the high respiration rates and membrane potential found at low H(+)-ATPase concentrations, and explaining that growth yield may be increased by activating the H(+)-ATPase.  相似文献   

16.
The ribulose monophosphate cycle methylotroph Methylobacillus flagellatum was grown under oxyturbidostat conditions on mixtures of methanol and formaldehyde. Formaldehyde when added at low concentration (50 mg/l) increased the methanol consumption and the yield of biomass. The presence of 150–300 mg/l of formaldehyde resulted in an increase of the growth rate from 0.74 to about 0.79–0.82 h-1. The presence of 500 mg/l of formaldehyde in the inflow decreased culture growth characteristics. Activities of methanol dehydrogenase and enzymes participating in formaldehyde oxidation and assimilation were measured. The enzymological profiles obtained are discussed.Abbreviations MDH methanol dehydrogenase - NAD-linked FDDH NAD-linked formaldehyde dehydrogenase - DLFDDH dye-linked formaldehyde dehydrogenase - DLFDH dye-linked formate dehydrogenase - GPDH glucose-6-phosphate dehydrogenase - PGDH 6-phosphogluconate dehydrogenase - RuMP cycle ribulose monophosphate cycle  相似文献   

17.
The ATPase activity (proton ATPase) of rat liver mitochondria was studied 2, 24, 28, 96 and 168 h after acute tetrachloromethane poisoning. It is established that the tetrachloromethane poisoning. It is established that the tetrachloromethane poisoning is accompanied by a considerable activation of mitochondrial H+-ATPase and a decrease of the DNP and Ca+, Na+ and K+ activating influence on it. Maximum changes in the H+-ATPase activity is observed 24 h after poisoning. Changes in the H+-ATPase properties are accompanied by a fall in the alpha-ketoglutarate dehydrogenase and succinate dehydrogenase activities and by disturbance of the liver mitochondria contractile properties. The electrochemical membrane potential of the mitochondria under the effect of tetrachloromethane is supposed to be reduced due to a primary damage of the phospholipid matrix of the coupling membrane and an increase in its proton conductivity.  相似文献   

18.
Modulation of glucose metabolic capacity of human preantral follicles in vitro by gonadotropins and intraovarian growth factors was evaluated by monitoring the activities of phosphofructokinase (PFK) and pyruvate kinase (PK), two regulatory enzymes of the glycolytic pathway, and malate dehydrogenase (MDH), a key mitochondrial enzyme of the Krebs cycle. Preantral follicles in classes 1 and 2 from premenopausal women were cultured separately in vitro in the absence or presence of FSH, LH, epidermal growth factor (EGF), insulin-like growth factor (IGF-I), or transforming growth factor beta1 (TGFbeta1) for 24 h. Mitochondrial fraction was separated from the cytosolic fraction, and both fractions were used for enzyme assays. FSH and LH significantly stimulated PFK and PK activities in class 1 and 2 follicles; however, a 170-fold increase in MDH activity was noted for class 2 follicles that were exposed to FSH. Although both EGF and TGFbeta1 stimulated glycolytic and Krebs cycle enzymes for class 1 preantral follicles, TGFbeta1 consistently stimulated the activities of both glycolytic enzymes more than that of EGF. IGF-I induced PK and MDH activities in class 1 follicles but negatively influenced PFK activity for class 1 follicles. In general, only gonadotropins consistently stimulated both glycolytic and Krebs cycle enzyme activities several-fold in class 2 follicles. These results suggest that gonadotropins and ovarian growth factors differentially influence follicular energy-producing capacity from glucose. Moreover, gonadotropins may either directly influence glucose metabolism in class 2 preantral follicles or do so indirectly through factors other than the well-known intraovarian growth factors. Because growth factors modulate granulosa cell mitosis and functionality, their role on energy production may be related to specific cellular activities.  相似文献   

19.
竹红菌甲素对红细胞膜上几种酶光敏失活作用的研究   总被引:9,自引:2,他引:7  
Hypocrellin A (HA)-sensitized photoinactivation of enzymes in human erythrocyte membrane, including AchE, GPDH, Na(+)-K+ ATPase, Ca2(+)-Mg2+ ATPase were studied in this paper. The sensitivity of these four enzymes inactivated by HA and light are as following order: Ca2(+)-Mg2+ ATPase greater than Na(+)-K+ ATPase greater than GPDH greater than AchE. The relationship among ATPase inactivation, sulfhydryl photoinactivation and lipid peroxidation was also investigated. Results show that SH group photooxidation probably is one of the major reasons of enzyme inactivation whereas lipid peroxidation has little effect. The isolated GPDH was less sensitive than that membrane-bound, GSH, NAD acted protectively on GPDH and ATPase respectively. The evidence of electrophoresis and protein intrinsic fluorescence showed that protein structure did not change significantly even though most activity had lost in case of GPDH.  相似文献   

20.
To investigate the hypothesis that acclimatization to altitude would result in a downregulation in muscle Na(+)-K(+)-ATPase pump concentration, tissue samples were obtained from the vastus lateralis muscle of six volunteers (5 males and 1 female), ranging in age from 24 to 35 yr, both before and within 3 days after a 21-day expedition to the summit of Mount Denali, Alaska (6,194 m). Na(+)-K(+)-ATPase, measured by the [(3)H]ouabain-binding technique, decreased by 13.8% [348 +/- 12 vs. 300 +/- 7.6 (SE) pmol/g wet wt; P < 0.05]. No changes were found in the maximal activities (mol. kg protein(-1). h(-1)) of the mitochondrial enzymes, succinic dehydrogenase (3.63 +/- 0.20 vs. 3.25 +/- 0.23), citrate synthase (4. 76 +/- 0.44 vs. 4.94 +/- 0.44), and malate dehydrogenase (12.6 +/- 1. 8 vs. 12.7 +/- 1.2). Similarly, the expedition had no effect on any of the histochemical properties examined, namely fiber-type distribution (types I, IIA, IIB, IC, IIC, IIAB), area, capillarization, and succinic dehydrogenase activity. Peak aerobic power (52.3 +/- 2.1 vs. 50.6 +/- 1.9 ml. kg(-1). min(-1)) and body mass (76.9 +/- 3.7 vs. 75.5 +/- 2.9 kg) were also unaffected. We concluded that acclimatization to altitude results in a downregulation in muscle Na(+)-K(+)-ATPase pump concentration, which occurs without changes in oxidative potential and other fiber-type histochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号