首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution and regeneration strategy of the major canopy dominants in species-rich subtropical/warm temperate rainforests in south-western Japan was studied in a hilly zone below 1100 m a.s.l. Using the patch sampling method, four dominance-community types were numerically identified and they corresponded to four habitats which represented a combination of topography and altitude (i.e. ridgesvs slopes, and belowvs above 500 m a.s.l.) Seven major canopy dominants had their respective distributional core in one of these topo-altitudinal habitats. The seven canopy dominants could be classified into three species groups according to their size structure and growth habits. Group A (Tsuga sieboldii andQuercus gilva) and group B (Quercus acuta, Quercus salicina, Machilus thunbergii) were restricted to the emergent and canopy layer, respectively. These two groups had only a few subcanopy trees and saplings. Saplings of group B showed a rapid growth rate in canopy gaps. Group C (Distylium racemosum) was characterized by many subcanopy trees and saplings that grew steadily under the closed canopy.Castanopsis sieboldii showed intermediate characteristics between group B and C in the size structure and growth habit of its saplings. The density ofD. racemosum canopy trees was markedly reduced on ridges and slopes above 500 m and on slopes below 500 m. In these marginal habitats, the three species groups coexisted by sharing different strata within a community. This situation was possible due to the differences in regeneration strategies among the canopy species.  相似文献   

2.
Gap characteristics and regeneration in gaps were studied in some primary evergreen broad-leaved forests of the warm temperate zone in western Japan. Total observed 161 gaps covered 15.7% of the total land area of 8.23 ha. Gap density was 19. 6 gaps ha−1 and mean gap size was 80.3 m2. Smaller gaps (<80 m2) were much more frequent than larger ones, and gaps larger than 400 m2 were rare. Gaps created by the death or the injury of single trees were 79.5%. Canopy trees died most often with broken trunks and not so often by uprooting or leaving standing-dead. Different types of gap regeneration behaviour were recognized among the major canopy tree species, though gap regeneration of the common evergreen broad-leaved tree species did not clearly depend on a species-specific gap size.Distylium racemosum, which occurred in equal importance (about 25%) in the canopy layer of each study stand, regenerates in gaps from saplings recruited before gap creation and can replace not only its own gaps but also gaps of other species. Therefore, it can be considered a typical climax species in this forest type of western Japan.Persea thunbergii, which can reproduce vegetatively, showed a similar type of gap regeneration behaviour.Castanopsis cuspidata can replace itself with relatively higher frequency by means of vegetative reproduction (stump sprouting) after gap creation.Quercus acuta andQuercus salicina did not regenerate under the current gap-disturbance regime. Though the frequency of uprooting is low, soil disturbance by uprooting seems to be important for the perpetuation of the pioneer tree species,Fagara ailanthoides, which recruits from buried seeds in the soil  相似文献   

3.
To detect the factors that affect sapling species composition in gaps, we investigated 55 gaps in an old-growth temperate deciduous forest in Ogawa Forest Reserve, central Japan. Gap size, gap age, gap maker species, topographic location, adult tree composition around gaps, and saplings of tree species growing in the gaps were censused. For gaps 5 m2, mean gap size was 70 m2 and the maximum was 330 m2. Estimated ages of gaps had a tendency to be concentrated in particular periods relating to strong wind records in the past. The sapling composition in gaps was highly and significantly correlated to that under closed canopy, indicating the importance of advance regeneration in this forest. However, some species showed significant occurrence biases in gaps or under closed canopy, suggesting differences in shade tolerance. The result of MANOVA showed that gap size and topography were important factors in determining the sapling composition in gaps. Species of gap makers affected the sapling composition indirectly by influencing gap size. The existence of parent trees around gaps had effects on sapling densities of several species. Gap age did not have clear influences on sapling composition. Variations in gap size and topography were considered as important factors that contribute to maintenance of species diversity in this forest.  相似文献   

4.
We studied regeneration patterns of three tree species Picea ajanensis, Betula platyphylla and Populus tremula from 1998 to 2000 in the Central Depression of the Kamchatka Peninsula. We paid special attention to the contribution of sprouting to their regeneration. P. ajanensis was the only species that regenerated by seedling. In a 40 × 40 m study plot, the density of P. ajanensis saplings < 2.0 cm in diameter at basal area (DBH) was 1132, and this was the highest among the three species studied. The number of saplings 2 cm in DBH declined sharply with size class. The spatial distribution of P. ajanensis saplings (< 2 cm in DBH) showed a significant positive correlation with that of adult trees and a negative correlation with that of gaps. These trends were not changed after re-measurement in 2000, although nearly half of the juveniles had died or been injured during the two years. These results suggest that small Picea saplings prefer habitats under the canopy of adult trees rather than in gaps for establishment. Most small individuals of B. platyphylla were produced from sprouts. The number of saplings in the smallest size class (< 2 cm in DBH) was much less than that of P. ajanensis, although the number of larger individuals did not decrease remarkably. The spatial distribution of B. platyphylla saplings showed a positive correlation with that of adult trunks and a negative correlation with that of canopy trees of P. ajanensis. These results suggest an effective contribution of sprouts to the regeneration of B. platyphylla. P. tremula was the only species that could invade big gaps and produce many root suckers efficiently. There were 181 suckers of P. tremula in the smallest size class (< 2 cm in DBH) in the study plot, although the number of saplings 2 cm in DBH declined abruptly. The spatial distribution of saplings of this species showed a slight positive correlation with that of gaps, and negative correlation with that of adult trees of B. platyphylla, P. ajanensis, and P. tremula. The root suckering strategy of P. tremula might be adaptive under severe conditions in high-latitude regions. Our data suggest, however, that it does not necessarily contribute to regeneration in mature forests. The three component species in this forest did not seem to utilize canopy gaps for regeneration; we suggest that gap dynamics do not work in this forest. The sparse canopy, which is a typical character of forests in high-latitude regions, might be a consequence of high mortalities of seedlings and root suckers inside gaps.  相似文献   

5.
Gap characteristics and gap regeneration were studied in several climaxFagus crenata forests in Japan. 278 gaps were observed. Gaps covered 12% of the total land area of 20.05 ha. Gap density was 13.9 gaps per ha and, mean gap size was 92.0 m2. Smaller gaps were much more frequent than larger ones. Gaps larger than 400 m2 were rare. Most gaps were created by the death of single trees. Canopy trees died more often standing or with broken trunks than by uprooting, although uprooted trees were relatively abundant in the site with poor soil drainage and in the site on upper slope. Differences of gap regeneration behaviour were recognized among tree species.F. crenata regenerates in gaps from saplings recruited before gap creation and can replace not only its own gaps but also gaps of other species. Most species other thanF. crenata andMagnolia obovata could not regenerate in their own gaps. More successful regeneration ofF. crenata may occur in gaps smaller than 200 m2, althought it regenerated in a wide range of gap size. However, increased relative density ofF. crenata in the canopy layer seems to prevent its successful regeneration. Gap regeneration of other species did not clearly depend on a species-specific gap size.  相似文献   

6.
Sapling density, shoot growth, and sapling architecture were studied in five major canopy dominants both under closed canopy and gaps in a warm-temperate rainforest. The five species showed wide variations in distribution, shoot growth, and sapling architecture. Distylium racemosum and Quercus acuta had significantly higher sapling densities under closed canopy than in gaps. Castanopsis sieboldii and Machilus thunbergii had significantly higher sapling densities in gaps than under closed canopy. Quercus salicina showed no significant difference in sapling density between the two habitats. Under closed canopy, C. sieboldii and M. thunbergii had wider crowns than the other species. Distylium racemosum had the greatest number of terminal shoots among the species. Quercus acuta had a branchless small crown. Quercus salicina showed intermediate values in crown width, depth and the number of terminal shoots among the species. Distylium racemosum showed the greatest height-growth rate among the species under the closed canopy, but was the slowest in gaps. Castanopsis sieboldii and M. thunbergii showed the greatest height-growth rates among the species in gaps. Quercus salicina showed the slowest height-growth rates both under closed canopy and gaps. All of the five species showed low mortality under closed canopy. For the major canopy dominants: (i) sapling architecture may not be an important factor in determining mortality but it may be important for height-growth rate; and (ii) sprouting helps saplings to survive until gap formation and facilitates rapid growth in the gaps.  相似文献   

7.
The regeneration of canopy and subeanopy species in a mid-elevation, primary rain forest in the Coastal Range of Isla de Chiloé (42°30S), in the cold-temperate region of Chile, was studied by comparing seedling and sapling abundances under the forest canopy, and within 36 tree-fall gaps. The forest was dominated byAmomyrtus luma andLaurelia philippiana (33 and 32% of the main canopy individuals), and two subcanopy species (Myrceugenia ovata, andMyrceugenia planipes) were also important. Uncommon species in the canopy wereDrimys winteri, Amomyrtus meli, andRaphithamnus spinosus. Tree-fall gaps were created generally by the fall of several trees, and the main canopy species were the principal gap-makers. Gap sizes varied between 28 and 972 m2, with a mean of 197 m2. Seedling and sapling abundances indicate that the dominant species are capable of regenerating below the canopy, but they also germinate and show enhanced growth within small light gaps. For one of the common subcanopy species (M. planipes) and the two infrequent canopy species (D. winteri, andA. meli) regeneration seems to depend entirely on tree-fall gaps. Thus, in this forest, light gaps allow the persistence of infrequent canopy species, but seem less important for the regeneration and maintenance of dominant canopy species.  相似文献   

8.
Ten trees (5–70 m2 canopy area) were selected to determine effects of tree size (crown area) on herbaceous species composition and biomass in a Quercus emoryi savanna in southeastern Arizona. Consistent with most studies in temperate savannas, herbaceous biomass was reduced beneath the canopy relative to grassland areas. However, tree size appeared to exert no influence over herbaceous biomass. In contrast to most temperate savannas, Q. emoryi trees did not affect distribution of herbaceous species.  相似文献   

9.
Abstract. We conducted a study in the laurel forest of Tenerife (Canary Islands, Spain) to describe the characteristics of natural gaps and to assess the role of treefall gaps in forest dynamics. Very little is left of the natural laurel forest with i.a. Laurus azorica, Ilex canariensis and Prunus lusitanica. We looked for treefall gaps in 80 randomly located 2500 m2 plots. These plots represented ca. 1% of the remaining and protected laurel forest of Tenerife. We recorded the characteristics of the species causing the gaps, gap architecture and gap age in all observed gaps larger than 10 m2. We inventoried the regeneration in each gap and in a neighbouring control plot with the same topography. Large gaps (>75 m2) were not common in the laurel forest. The absence of large gaps could be due to the physiognomy of the vegetation, the mild weather or the rarity of disturbances. Instead of forming gaps, many trees decompose in place and branches from neighbouring trees and suckers from the decomposed trees occupy the free space. Also, the high rate of asexual regeneration could contribute to the fast closing of the gap. The number of gaps created by Prunus lusitanica was higher than expected (based on canopy composition) while Ilex canariensis and Laurus azorica created fewer gaps. In this evergreen forest, differences between gap and non-gap conditions are not as distinct as in other forest types. Only 0.4% of the canopy is in the gap phase (0.6% including gaps smaller than 10m2). No differences were found in patterns of regeneration between gap and non-gap phases in the forest. Gaps do not explain the persistence of pioneer species in the laurel forest.  相似文献   

10.
Stand structure and regeneration in a Kamchatka mixed boreal forest   总被引:1,自引:0,他引:1  
Abstract. A 1‐ha plot was established in a Betula platyphylla‐Picea ajanensis mixed boreal forest in the central Kamchatka peninsula in Russia to investigate stand structure and regeneration. This forest was relatively sparse; total density and stand basal area were 1071/ha and 25.8 m2/ha, respectively, for trees > 2.0 cm in trunk diameter at breast height (DBH). 25% of Betula regenerated by sprouting, and its frequency distribution of DBH had a reverse J‐shaped pattern. In contrast, Picea had a bimodal distribution. The growth rates of both species were high, reaching 20 m in ca. 120 yr. The two species had clumped distributions, especially for saplings. Betula saplings were not distributed in canopy gaps. Small Picea saplings were distributed irrespective of the presence/absence of gaps, while larger saplings aggregated in gaps. At the examined spatial scales (6.25–400 m2) the spatial distribution of Betula saplings was positively correlated with living Betula canopy trees and negatively with dead Picea canopy trees. This suggests that Betula saplings regenerated under the crowns of Betula canopy trees and did not invade the gaps created by Picea canopy trees. The spatial distribution of Picea saplings was negatively correlated with living and dead Betula canopy trees and positively with dead Picea canopy trees. Most small Picea seedlings were distributed under the crowns of Picea trees but not under the crowns of Betula trees or in gaps. This suggests that Picea seedlings establish under the crowns of Picea canopy trees and can grow to large sizes after the death of overhead Picea canopy trees. Evidence of competitive exclusion between the two species was not found. At a 20 m × 20 m scale both skewness and the coefficient of variation of DBH frequency distribution of Picea decreased with an increase in total basal area of Picea while those of Betula were unchanged irrespective of the increase in total basal area of Betula. This indicates that the size structure of Picea is more variable with stand development than that of Betula on a small scale. This study suggests that Betula regenerates continuously by sprouting and Picea regenerates discontinuously after gap formation and that the species do not exclude each other.  相似文献   

11.
Species assembly and niche differentiation were studied, and future species composition was predicted by simple Markov models, in an old-growth deciduous forest at the Ogawa Forest Reserve in central Japan. The dominant species in our 6ha study site are Quercus serrata, Fagus japonica, and F. crenata.An ordination by population parameters revealed four different combination 3 of life forms and regeneration niches. Cluster analysis based on interspecific spatial correlation revealed three groups of species. The species in cluster A, such as F. japonica, occurred at the bottom of the valley, while those in cluster B, such as Q. serrata, occurred along ridges. Species in cluster C, such as F. crenata, did not show any particular habitat preference. Clusters B and C were further divided into three smaller clusters (a-c). Both clusters Ba and Bb included shade intolerant species. Species in cluster Ba had large clump sizes (>1500 m2), reflecting regeneration following large-scale disturbances. Species in cluster Bb had smaller clump sizes (<400 m2) reflecting regeneration following local disturbances. Clusters Ca and Cb mainly included shade tolerant species and shade intolerant species, respectively. Markov models predicted that shade intolerant species, particularly those in cluster Ba, would be eliminated. Thus, species coexist by differentiation of both habitats and regeneration niche in this forest community. Some species such as Quercus serrata, however, regenerate following large-scale disturbances or human activity.  相似文献   

12.
S. Yamamoto 《Plant Ecology》1996,127(2):203-213
Gap regeneration of major tree species was examined, based on the pattern of gap phase replacement, in primary old-growth stands of warm-temperate, cool-temperate and subalpine forests, Japan. Using principal component analysis, the gap-regeneration behavior of major tree species could be divided into three guilds and that of Fagus crenata (monodominant species of cool-temperate forests). The criteria used for this division were total abundance of canopy trees and regenerations and relative abundance of regenerations to canopy trees. The gap-regeneration behavior of species in the first guild was that canopy trees regenerate in gaps from seedlings or saplings recruited before gap formation; they had higher total abundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of F. crenata was same as species in the first guild, but F. crenata had less abundant regenerations relative to its canopy trees. Species in the second guild had lower total abundance and less abundant regenerations to their canopy trees. The guild contained species whose canopy trees regenerate in gaps from seedlings or saplings recruited after gap formation or regenerate following largescale disturbance. The third guild consisted of species with lower total aboundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of some species in this guild was that trees regenerate in gaps from seedlings or saplings recruited before gap formation, and grow, mature, and die without reaching the canopy layer, while the gap-regeneration behavior of other species was same as that of species in the first guild or F. crenata. Major tree species of subalpine forests were not present in the third guild.  相似文献   

13.
Question: Is tree regeneration in canopy gaps characterized by chance or predictable establishment. Location: Coastal scarp forests, Umzimvubu district, Eastern Cape Province, South Africa. Methods: Estimation of richness of gap‐filling species across canopy gaps of different size. Data are compared with regeneration under the canopy. Probability of self‐replacement of gap forming species is calculated. Results: Forest area under natural gap phase was 7.8%, caused mostly by windthrow (54%). The abundance and average size of gaps (87.8 m2) suggests that species diversity may be maintained by gap dynamics. However, only four of 53 gap‐filler species displayed gap size specialization and these were pioneer species. An additional 13 species were more common in larger gaps but there was no gradient in composition of gap‐filler species across gap size (p= 0.61). Probabilities of self‐replacement in a gap were low (< 0.3) and common canopy species were equally abundant in gaps and the understorey. Species composition in gaps showed no pattern of variation, i.e. was unpredictable, which suggests absence of a successional sequence within tree‐fall gaps. There was also only a slight increase in species richness in gaps at intermediate levels of disturbance. Conclusions: Coastal scarp forest appears not to comprise tightly co‐evolved, niche‐differentiated tree species. Unpredictable species composition in gaps may be a chance effect of recruitment limitation of species from the species pool. Chance establishment slows competitive exclusion and may maintain tree diversity in these forests. These data suggest that current levels (≤ 3 gaps per ha) of selective tree harvesting may not cause a reduction in species richness in this forest.  相似文献   

14.
采用典型样地法,以川西周公山柳杉人工林5种不同大小的林窗为研究对象,以林下非林窗为对照,研究了不同大小的林窗对柳杉人工林物种多样性的影响,同时分析了不同梯度林窗下林窗中心、林窗边缘、及林下群落的物种组成、物种多样性的变化情况。结果表明:(1)在所调查的18个样地231个样方中共记录到维管束植物141种,隶属于76科113属;随着林窗面积的增大,群落各层次的物种数呈现出先升高后降低的趋势,灌木层物种数在各林窗梯度上表现为林缘林下林窗中心,草本层物种数在各林窗梯度上表现为林缘林窗中心林下。(2)不同林窗优势种及其重要值不同,即在小林窗内,优势种为柳杉和野桐,其重要值之和高达0.292 3;在大林窗内,杉木及亮叶桦为群落优势物种,群落内出现大量其更新幼苗。(3)不同大小的林窗表现为灌木层物种丰富度指数(D)、Shannon-Wienner指数(H)、和Pielou均匀度指数(Jsw)值在400~450 m2面积的大林窗内达到一个均优水平,草本层物种的多样性在面积为100~150m2的小林窗内达到较高水平;不同梯度的林窗各层次群落D、H值整体表现为林缘林窗中心林下。研究认为:林窗的存在会改变群落物种组成,提高群落物种多样性水平,并且大林窗(400~450m2)更利于柳杉人工林林下树种更新及物种多样性的提高。  相似文献   

15.
Summary Tree species replacement was studied in 95 canopy gaps created by the fall of single trees in an undisturbed, old-growth forest in Great Smoky Mountains National Park, Tennessee. When large trees (dbh>70 cm) of the very shade tolerant species, Tsuga canadensis, die and fall, they are usually replaced by less tolerant species such as Betula alleghaniensis, Liriodendron tulipifera, and Magnolia fraseri. Species diversity of the replacement trees, measured by the index, 1/pi 2, was 5.77 compared to a diversity of 1.66 for the fallen trees.  相似文献   

16.
Questions: How does the seed bank respond to different types of tree‐fall gaps and seasonal variations? How does the soil seed bank influence recovery of the standing vegetation in the mature forest and tree‐fall gaps? Location: 1800 — 2020 m a.s.l., Quercus‐Pinus forest, Baja California Sur, Mexico. Methods: Seed size, species composition and germination were estimated under different environmental conditions during dry and rainy seasons: a mature forest plot and gaps created by dead standing trees, snapped‐of f trees and uprooted trees. The soil seed bank was investigated using direct propagule emergence under laboratory conditions, from soil cores obtained during both seasons. Results: 21 species, 20 genera and 14 families constitute the seed bank of this forest community. Fabaceae, Asteraceae, Euphorbiaceae and Lamiaceae were the most frequently represented families in the seed bank. Floristic composition and species richness varied according to the different modes of tree death. Species composition of seed banks and standing vegetation had very low similarity coefficients and were statistically different. Seed bank sizes varied between 164 and 362 ind.m‐2 in the mature forest plot for the dry and rainy seasons, respectively, while soil seed bank sizes for gaps ranged between 23–208 ind.m‐2 forthe dry season and between 81–282 ind.m‐2 for the rainy season. Conclusions: Seed bank sizes and germination response were always higher in the rainy season under all the environmental conditions analysed. Results suggest that timing responses to gap formation of the soil seed bank could be more delayed in this temperate forest than expected.  相似文献   

17.
In 1979 and 1991, trees over 2.0 m high were measured and mapped together with their crown projections to clarify stand dynamics and shifts in canopy dominants during this period, in a permanent plot of 0.525 ha in an old-growth, cool temperate mixed forest of Mt Moiwa, Central Hokkaido, northern Japan. During this period, an abundant recruitment of trees was observed after some canopy trees were felled by a typhoon in 1981 leaving gaps in the canopy. Vigorous recruitment was observed forTilia japonica, Acer mono andPrunus ssiori. These species had different regeneration sites in relation to canopy state. NeitherUlmus japonica norKalopanax pictus had any recruits during the 12 year period even in gaps. The equilibrium composition of tree species projected from transition probability analysis also implied the above shift of dominant species during the 12 year period in the plot and suggested that the present forest is not in an equilibrium state.  相似文献   

18.
In the Atlantic Montane Rain Forest of south-eastern Brazil, a field study was carried out to describe the forest disturbance regime, analyse canopy gap composition and evaluate the influence of habitat parameters on gap tree species composition. We characterized canopy gaps considering the group of variables as follows: area, type and number of tree/branch falls, topographic position, soil coverage and surrounding canopy trees. Gap composition was assessed at species level by measuring all individuals inside gaps higher than one meter. Mean gap area of the 42 canopy gaps analysed was 71.9 ± 9.0 m2 (mean ± SE). Out of the studied gaps, 35.7% were created by uprooted and by snapped trees, 16.7% by dead-standing trees and 11.9% by the fall of large branches. The disturbance regime was characterized by gap openings predominantly smaller than 150 m2 and by spatial patterning related to topography. Ridges had smaller gaps and higher proportions of gaps created by branch falls; slopes had bigger gaps generally created by uprooting events. The more abundant and frequent species were shade tolerant and the more species-rich families found inside gaps did not differ from the forest as a whole. Pioneer species were rare and restricted to medium and large size classes. The Indicator Species Analysis and the Canonical Correspondence Analysis indicated gap area, topography and the percentage of soil cover by the genera Calathea and Ctenanthe were the predominant variables correlated with woody species distribution. So, topography emerged as an important issue not only to the gap disturbance regime, but also to gap colonization. In respect to the influence of gap processes on the Atlantic Montane Rain Forest regeneration, our results support the view that canopy gap events may not be working as promoters of community wide floristic shifts.  相似文献   

19.
Taylor  Scott O.  Lorimer  Craig G. 《Plant Ecology》2003,167(1):71-88
Gap capture methods predict future forest canopy species composition from the tallest trees growing in canopy gaps rather than from random samples of shaded understory trees. We used gap capture methods and a simulation approach to forecast canopy composition in three old oak forests (Quercus spp.) on dry-mesic sites in southern Wisconsin, USA. In the simulation, a gap sapling is considered successful if it exceeds a threshold height of 13–17 m (height of maximum crown width of canopy trees) before its crown center can be overtopped by lateral crown growth of mature trees. The composition of both the tallest gap trees and simulated gap captures suggests that 68–90% of the next generation of canopy trees in the stands will consist of non-Quercus species, particularly Ulmus rubra, Carya ovata and Prunus serotina. Quercus species will probably remain as a lesser stand component, with Quercus alba and Quercus rubra predicted to comprise about 19% of successful gap trees across the three stands. Several methods of predicting future canopy composition gave similar results, probably because no gap opportunist species were present in these stands and there was an even distribution of species among height strata in gaps. Gap trees of competing species already average 11–13 m tall, and mean expected time for these trees to reach full canopy height is only 19 years. For these reasons, we suggest that dominance will shift from oaks to other species, even though late successional species (e.g., Acer and Tilia) are not presently common in the understories of these stands.  相似文献   

20.
This study was conducted to determine the abundance of Quercus species, the spatial pattern of Quercus regeneration, the current canopy disturbance pattern, and their interrelationship in two old-growth deciduous forests in Ohio (Goll Woods and Sears-Carmean Woods). Acer saccharum and Fagus grandifolia had the greatest density and basal area in both forests, yet the largest trees (by basal area) present at each site were Quercus spp. Quercus spp. appeared to be decreasing in abundance in both sites. Though Quercus seedlings were common, few Quercus saplings or subcanopy trees were present. The current disturbance regimes were dominated by small canopy gaps created by death of 1–2 trees; canopy gaps 100 m2 in size were rare and only 2.5–2.8% of the forest area was covered by recognizable canopy gaps. No significant differences in the density of Quercus seedlings or saplings were found between gaps and non-gap areas at either site. Though no significant barrier to seedling establishment appeared to exist, the present disturbance regimes are not well suited for the growth of Quercus into the subcanopy size class or the recruitment of Quercus into the canopy. The most frequent gapmakers in Goll Woods were Tilia americana and Acer saccharum, and those in Sears-Carmean Woods were A. saccharum and F. grandifolia. The species most frequent as gap fillers were A. saccharum (in both sites) and F. grandifolia (in Goll Woods). These results suggest that A. saccharum will continue to increase in abundance, and Quercus decrease in abundance, in these two old-growth stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号