首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycotoxin contamination associated with head blight of wheat and other grains caused by Fusarium culmorum and F. graminearum is a chronic threat to crop, human, and animal health throughout the world. One of the most important toxins in terms of human exposure is deoxynivalenol (DON) (formerly called vomitoxin), an inhibitor of protein synthesis with a broad spectrum of toxigenicity against animals. Certain Fusarium toxins have additional antimicrobial activity, and the phytotoxin fusaric acid has recently been shown to modulate fungus-bacterium interactions that affect plant health (Duffy and Défago, Phytopathology 87:1250-1257, 1997). The potential impact of DON on Fusarium competition with other microorganisms has not been described previously. Any competitive advantage conferred by DON would complicate efforts to control Fusarium during its saprophytic growth on crop residues that are left after harvest and constitute the primary inoculum reservoir for outbreaks in subsequent plantings. We examined the effect of the DON mycotoxin on ecological interactions between pathogenic Fusarium and Trichoderma atroviride strain P1, a competitor fungus with biocontrol activity against a wide range of plant diseases. Expression of the Trichoderma chitinase genes, ech42 and nag1, which contribute to biocontrol activity, was monitored in vitro and on crop residues of two maize cultivars by using goxA reporter gene fusions. We found that DON-producing F. culmorum and F. graminearum strains repressed expression of nag1-gox. DON-negative wild-type Fusarium strains and a DON-negative mutant with an insertional disruption in the tricothecene biosynthetic gene, tri5, had no effect on antagonist gene expression. The role of DON as the principal repressor above other pathogen factors was confirmed. Exposure of Trichoderma to synthetic DON or to a non-DON-producing Fusarium mutant resulted in the same level of nag1-gox repression as the level observed with DON-producing Fusarium. DON repression was specific for nag1-gox and had no effect, either positive or negative, on expression of another key chitinase gene, ech42. This is the first demonstration that a target pathogen down-regulates genes in a fungal biocontrol agent, and our results provide evidence that mycotoxins have a novel ecological function as factors in Fusarium competitiveness.  相似文献   

2.
3.
Common PCR assays for quantification of fungi in living plants cannot be used to study saprophytic colonization of fungi because plant decomposition releases PCR-inhibiting substances and saprophytes degrade the plant DNA which could serve as internal standard. The microsatellite PCR assays presented here overcome these problems by spiking samples prior to DNA extraction with mycelium of a reference strain. PCR with fluorescent primers co-amplifies microsatellite fragments of different length from target and reference strains. These fragments were separated in a capillary sequencer with fluorescence detection. The target/reference ratio of fluorescence signal was used to calculate target biomass in the sample. Such PCR assays were developed for the mycotoxin deoxynivalenol (DON)-producing wheat and maize pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride, using new microsatellite markers. In contrast to real-time PCR assays, the novel PCR assays showed reliable fungal biomass quantification in samples with differentially decomposed plant tissue. The PCR assays were used to quantify the two fungi after competitive colonization of autoclaved maize leaf tissue in microcosms. Using a DON-producing F. graminearum wild-type strain and its nontoxigenic mutant we found no evidence for a role of DON production in F. graminearum defense against T. atroviride. The presence of T. atroviride resulted in a 36% lower wild-type DON production per biomass.  相似文献   

4.
Deoxynivalenol (DON) content and Fusarium spp. ( Fusarium graminearum , Fusarium culmorum , Fusarium avenaceum , Microdochium nivale and Fusarium poae ) of mycotoxin-producing Fusarium species in winter wheat in Belgium (Flanders) were determined. Field trials were set up in the varietal testing network of Flanders Agricultural Centre for Small Grains (Roeselare – Beitem, Belgium) and followed up during growing seasons 2001–2002, 2002–2003, 2003–2004 and 2004–2005. Fusarium infection and DON contamination were mainly influenced by location and environmental parameters. Mean DON levels ranged from 0 to 15 mg/kg. Over the period of four growing seasons cvs Deben, Ordeal and Napier had the highest DON contamination. Seasonal and local weather conditions before and during flowering together with local crop husbandry measures (crop rotation, soil preparation) seemed to be of great importance in explaining the variation in results obtained. At Bottelare a positive correlation between disease index and DON content was found for the growing seasons 2001–2002 and 2002–2003, but not the season 2003–2004. Fusarium graminearum and F. culmorum were in general the most frequently occurring Fusarium spp. in Flanders over the 4 years but the composition of the Fusarium population varied strongly from location to location and from year to year. Fusarium graminearum predominated in areas especially where maize was cultivated, whereas in areas with more small cereals in the crop rotation more F. culmorum was present. Also temperature played a role in the composition of Fusarium spp.  相似文献   

5.
AIMS: Comparisons were made of the effect of water activity (a(w) 0.99-0.85), temperature (15 and 25 degrees C) and time (40 days) on growth/production of the trichothecene mycotoxin deoxynivalenol (DON) by Fusarium culmorum and Fusarium graminearum on wheat grain. METHODS AND RESULTS: Studies examined colonization of layers of wheat grain for 40 days. Fusarium culmorum grew optimally at 0.98 a(w) and minimally at 0.90 a(w) at 15 and 25 degrees C. Colonization by F. graminearum was optimum at 0.99 a(w) at 25 and 0.98 a(w) at 15 degrees C. Overall, temperature, a(w) and their interactions significantly affected growth of both species. Production of DON occurred over a much narrower range (0.995-0.96 a(w)) than that for growth. Optimum DON was produced at 0.97 and 0.99 a(w) at 15 and 25 degrees C, respectively, by F. culmorum, and at 0.99 a(w) and 15 degrees C and 0.98 a(w) at 25 degrees C for F. graminearum. Statistically, one-, two- and three-way interactions were significant for DON production by both species. CONCLUSIONS: This suggests that the ecological requirements for growth and mycotoxin production by such species differ considerably. The two-dimensional profiles on grain for DON production by these two species have not been examined in detail before. SIGNIFICANCE AND IMPACT OF THE STUDY: This type of information is essential for developing climate-based risk models for determining the potential for contamination of cereal grain with this trichothecene mycotoxin. It will also be useful information for monitoring critical control points in prevention of such toxins entering the wheat production chain.  相似文献   

6.
Species of the genus Fusarium produce a great diversity of agriculturally important trichothecene toxins that differ from each other in their pattern of oxygenation and esterification. T-2 toxin, produced by Fusarium sporotrichioides, and nivalenol (NIV), produced by some strains of F. graminearum, contain an oxygen at the C-4 position. Deoxynivalenol (DON), produced by other strains of F. graminearum, lacks a C-4 oxygen. NIV and DON are identical except for this difference, whereas T-2 differs from these trichothecenes at three other carbon positions. Sequence and Northern analyses of the F. sporotrichioides genomic region upstream of the previously described core trichothecene gene cluster have extended the cluster by two genes: TRI13 and TRI14. TRI13 shares significant similarity with the cytochrome P-450 class of enzymes, but TRI14 does not share similarity with any previously characterized proteins. Gene disruption and fermentation studies in F. sporotrichioides indicate that TRI13 is required for the addition of the C-4 oxygen of T-2 toxin, but that TRI14 is not required for trichothecene biosynthesis. PCR and sequence analyses indicate that the TRI13 homolog is functional in NIV-producing strains of F. graminearum but nonfunctional in DON-producing strains of the fungus. These genetic observations are consistent with chemical observations that biosynthesis of T-2 toxin and NIV requires a C-4 hydroxylase while biosynthesis of DON does not.  相似文献   

7.
Fusarium head blight is an important disease of cereal crops caused by Fusarium species. It causes not only a reduction in yield, but most Fusarium species (F. graminearum. F. culmorum, F. avenaceum. F. poae) produce also a range of toxic metabolites such as deoxynivalenol (DON) and zearalenone (ZEA). The evaluation of Fusarium species was followed up under natural infection conditions during the growing seasons 2001--2002 and 2002--2003 in two varietal winter wheat experiments on the experimental farm of the Hogeschool Gent at Bottelare. Disease pressure, DON and ZEA content, different Fusarium species as well as growth and yield parameters were determined. In both years there were significant differences between the varieties concerning the susceptibility to Fusarium and the DON content. ZEA was not found in the kernels. The mean deoxynivalenol (DON) content was in 2002 (1,126 mg/kg) higher than in 2003 (0.879 mg/kg) although the mean disease severity was bigger in 2003 than in 2002 what means that the DON content was not always correlated with the disease severity. The Fusarium species most frequently identified in our two field trials (Bottelare) were F. graminearum and F. culmorum Varietal differences in susceptibility to Fusarium species and DON contamination could be detected.  相似文献   

8.
The production of deoxynivalenol, acetyl deoxynivalenol and zearalenone by Fusarium culmorum and F. graminearum on autoclave-sterilized grain (maize, rice, wheat and barley) was investigated. Fusarium culmorum produced significantly greater levels of toxins than F. graminearum. The four substrates examined differed in their ability to support toxin production. Toxin production on maize and rice was significantly greater than toxin production on barley or wheat.  相似文献   

9.
For monitoring chitinase expression during mycoparasitism of Trichoderma harzianum in situ, we constructed strains containing fusions of green fluorescent protein (GFP) to the 5'-regulatory sequences of the T. harzianum nag1 (N-acetyl-beta-d-glucosaminidase-encoding) and ech42 (42-kDa endochitinase-encoding) genes. Confronting these strains with Rhizoctonia solani led to induction of gene expression before (ech42) or after (nag1) physical contact. A 12-kDa cut-off membrane separating the two fungi abolished ech42 expression, indicating that macromolecules are involved in its precontact activation. No ech42 expression was triggered by culture filtrates of R. solani or by placing T. harzianum onto plates previously colonized by R. solani. Instead, high expression occurred upon incubation of T. harzianum with the supernatant of R. solani cell walls digested with culture filtrates or purified endochitinase 42 (CHIT42, encoded by ech42) from T. harzianum. The chitinase inhibitor allosamidin blocked ech42 expression and reduced inhibition of R. solani growth during confrontation. The results indicate that ech42 is expressed before contact of T. harzianum with R. solani and its induction is triggered by soluble chitooligosaccharides produced by constitutive activity of CHIT42 and/or other chitinolytic enzymes.  相似文献   

10.
11.
Identification of Fusarium species by traditional methods requires specific skill and experience and there is an increased interest for new molecular methods for identification and quantification of Fusarium from food and feed samples. Real-time PCR with probe technology (Taqman) can be used for the identification and quantification of several species of Fusarium from cereal grain samples. There are several critical steps that need to be considered when establishing a real-time PCR-based method for DNA quantification, including extraction of DNA from the samples. In this study, several DNA extraction methods were evaluated, including the DNeasy Plant Mini Spin Columns (Qiagen), the Bio robot EZ1 (Qiagen) with the DNeasy Blood and Tissue Kit (Qiagen), and the Fast-DNA Spin Kit for Soil (Qbiogene). Parameters such as DNA quality and stability, PCR inhibitors, and PCR efficiency were investigated. Our results showed that all methods gave good PCR efficiency (above 90%) and DNA stability whereas the DNeasy Plant Mini Spin Columns in combination with sonication gave the best results with respect to Fusarium DNA yield. The modified DNeasy Plant Mini Spin protocol was used to analyse 31 wheat samples for the presence of F. graminearum and F. culmorum. The DNA level of F. graminearum could be correlated to the level of DON (r(2) = 0.9) and ZEN (r(2) = 0.6) whereas no correlation was found between F. culmorum and DON/ZEA. This shows that F. graminearum and not F. culmorum, was the main producer of DON in Swedish wheat during 2006.  相似文献   

12.
Fusarium culmorum is a serious plant pathogen, especially on cereals. The production of deoxynivalenol (DON) by F. culmorum is believed to play a role in pathogenesis. This relationship has been almost exclusively studied in connection with head blight. The present paper reports the first finding of DON in cereal seedlings infected with F. culmorum . A pathogenicity test was performed, including 70 isolates of this pathogen from different sites within northern and central Europe. All isolates caused disease on barley seedlings. For 15 isolates with varying aggressiveness, the DON content in the 19-day-old-barley seedlings was determined. There was a significant correlation between DON concentration and disease index. The aggressiveness of two outlying isolates with very low DON production is discussed. The results indicate that for F. culmorum isolates of the DON chemotype, production of this toxin influences the aggressiveness of the isolates towards barley seedlings.  相似文献   

13.
Fusarium head blight (FHB; scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat worldwide. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins such as deoxynivalenol (DON). The genetic variation in existing wheat germplasm pools for FHB resistance is low and may not provide sufficient resistance to develop cultivars through traditional breeding approaches. Thus, genetic engineering provides an additional approach to enhance FHB resistance. The objectives of this study were to develop transgenic wheat expressing a barley class II chitinase and to test the transgenic lines against F. graminearum infection under greenhouse and field conditions. A barley class II chitinase gene was introduced into the spring wheat cultivar, Bobwhite, by biolistic bombardment. Seven transgenic lines were identified that expressed the chitinase transgene and exhibited enhanced Type II resistance in the greenhouse evaluations. These seven transgenic lines were tested under field conditions for percentage FHB severity, percentage visually scabby kernels (VSK), and DON accumulation. Two lines (C8 and C17) that exhibited high chitinase protein levels also showed reduced FHB severity and VSK compared to Bobwhite. One of the lines (C8) also exhibited reduced DON concentration compared with Bobwhite. These results showed that transgenic wheat expressing a barley class II chitinase exhibited enhanced resistance against F. graminearum in greenhouse and field conditions.  相似文献   

14.
AIMS: The objective of this study was to evaluate the capability of Fusarium culmorum to produce non-hydrophobin surface-active proteins in vitro, to isolate and characterize such proteins from liquid cultures, to analyse their effect on overfoaming (gushing) of beer and to elucidate their prevalence in pure cultures and infected malt. METHODS AND RESULTS: A 20 kDa protein was isolated from liquid cultures of F. culmorum BBA 62182 upon enrichment by foaming. BLAST search with N-terminal and internal sequences of the protein revealed high homology with a hypothetical protein predicted within the F. graminearum PH1 genome sequence. Oligonucleotide primers designed to bind 30 nt upstream and downstream of the predicted gene were used to amplify a 695 nt PCR fragment from genomic DNA of F. culmorum BBA 62182. Cloning and sequencing of the product revealed a 635 nt open reading frame which had 98% homology to the predicted F. graminearium PH1 gene code. Removal of a 59 nt intron and translation resulted in a 191 amino acid protein of 20.754 kDa with a calculated pI of 9.1. Amino acids obtained by Edman sequencing of fragments within the 20 kDa protein were 100% homologous with the sequence deduced from the DNA sequence. According to its properties, the new protein was termed alkaline foam protein A (AfpA). Sequence comparison revealed some homologies with proteins in Emericella nidulans, which are involved in phialide development and response to antifungal agents. Homologies with other hypothetical fungal proteins suggest a new group of proteins, for which we suggest the name fungispumins. Addition of AfpA to beer showed that overfoaming (gushing) is not induced in stable beer but can significantly enhance this effect in beer showing moderate gushing. Use of a polyclonal anti-AfpA antibody in a Western blot revealed that the protein is produced by various F. culmorum strains and also by F. graminearum, but not by other Fusarium spp. tested. PCR testing of 69 species of Fusarium and Trichoderma reesei with a gene specific primer pair revealed that the gene may be present exclusively in F. culmorum, F. graminearum, F. cerealis, F. lunulosporum and F. oxysporum f. sp . dianthi. Immunochemical detection of AfpA in malts artificially inoculated with F. culmorum and F. graminearum showed that the protein was present in gushing inducing malts (gushing test) but absent in malts which were negative in a gushing test. CONCLUSIONS: AfpA is a member of a new protein class, fugispumins, and can be isolated from pure liquid cultures of F. culmorum. A homologous protein is synthesised by F. graminearum. The protein is produced in contaminated malt and enhances gushing of beer. The gene coding for AfpA is restricted to Fusarium species presumably involved in the induction of beer gushing. SIGNIFICANCE AND IMPACT OF THE STUDY: We describe a new class of proteins, fungispumins, the natural function of which remains to be elucidated. Findings add useful information to research on the mechanisms involved in foam stability of beer. AfpA may be useful as a marker for gushing in future quality control applications for the brewing industry.  相似文献   

15.
The chitinase genes of Trichoderma spp. (ech42, chit33, nag1) contain one or more copies of a pentanucleotide element (5'-AGGGG-3') in their 5'-noncoding regions. In Saccharomyces cerevisiae, this motif is recognized and bound by the stress response regulator proteins Msn2p/Msn4p. To test whether this motif in the chitinase promoters is bound by a Trichoderma Msn2/4p homolog, we have cloned a gene (seb1) from T. atroviride which encodes a C2H2 zinc-finger protein that is 62 (64)% identical to S. cerevisiae Msn2p (Msn4p) in the zinc-finger region, and almost identical to the G-box binding protein from Haematonectria haematococca and to polypeptides encoded by uncharacterized ORFs from Neurospora crassa and Aspergillus nidulans. Its zinc-finger domain specifically recognizes the AGGGG sequence of the ech42 and nag1 promoter in band-shift assays. However, a cDNA clone of seb1, when overexpressed in S. cerevisiae, was unable to complement a Delta msn2/4 mutant of S. cerevisiae. Levels of seb1 mRNA increased under conditions of osmotic stress (sorbitol, NaCl) but not under other stress conditions (cadmium sulfate, pH, membrane perturbance). A T. atroviride Delta seb1 strain, produced by transformation with a seb1 copy disrupted by insertion of the A. nidulans amdS gene, showed strongly reduced growth on solid medium, but grew normally in liquid medium. In liquid medium, growth of the disruption strain was significantly more inhibited by the presence of 1 M sorbitol and 1 M NaCl than was that of the wild-type strain. Despite the presence of AGGGG elements in the promoter of the chitinase gene nag1, no differences in its expression were found between the parent and the disruption strain. EMSA analyses with cell-free extracts obtained from the seb1 disruption strain showed the presence of proteins that could bind to the AGGGG-element in nag1 and ech42. We therefore conclude that seb1 encodes a protein that is involved in the osmotic stress response, but not in chitinase gene expression, in T. atroviride.  相似文献   

16.
Fusarium graminearum and Fusarium culmorum are the major pathogenic organisms causing head blight in small-grain cereals. Natural epidemics may result in severe yield losses, reduction in quality, and contamination of the grain by mycotoxins. The genetic diversity of four field populations of F. graminearum from Germany, Hungary, and Canada, and one population of F. culmorum from Russia was investigated by polymerase chain reaction (PCR)-based fingerprinting. Additionally, a world-wide collection and two of the F. graminearum populations were analysed for their aggressiveness on young plants of winter rye in the greenhouse. The number of isolates analysed per population varied from 25 to 70. Significant quantitative variation for aggressiveness was observed within each of the individual field populations amounting to the same range as the world-wide collection. Abundant variation within populations was also revealed by DNA markers. The F. graminearum populations from Hungary and Winnipeg displayed the least genotypic diversity, the two German F. graminearum populations and the Russian F. culmorum population were highly diverse. Population diversity, however, followed no spatial pattern among samples within a German field for aggressiveness or molecular markers. For F. graminearum , sexual recombination is the most likely explanation for the large genetic diversity within field populations. Asexual and/or parasexual recombination, and balancing selection caused by the periodic alternation between the saprophytic and parasitic phase might play an additional role and account for the variation within the F. culmorum population. For improving Fusarium resistance, several resistance genes of different sources should be combined to avoid an unspecific adaptation of the genetically variable pathogen to an increased resistance level.  相似文献   

17.
Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma atroviride, which encodes a novel G protein alpha subunit that belongs to subgroup III of fungal Galpha proteins. Deltatga3 mutants had changes in vegetative growth, conidiation, and conidial germination and reduced intracellular cyclic AMP levels. These mutants were avirulent in direct confrontation assays with Rhizoctonia solani or Botrytis cinerea, and mycoparasitism-related infection structures were not formed. When induced with colloidal chitin or N-acetylglucosamine in liquid culture, the mutants had reduced extracellular chitinase activity even though the chitinase-encoding genes ech42 and nag1 were transcribed at a significantly higher rate than they were in the wild type. Addition of exogenous cyclic AMP did not suppress the altered phenotype or restore mycoparasitic overgrowth, although it did restore the ability to produce the infection structures. Thus, T. atroviride Tga3 has a general role in vegetative growth and can alter mycoparasitism-related characteristics, such as infection structure formation and chitinase gene expression.  相似文献   

18.
Fusarium culmorum is a major pathogen of wheat and barley causing head blight and crown rot in cooler temperate climates of Australia, Europe, West Asia and North Africa. To better understand its evolutionary history we partially sequenced single copy nuclear genes encoding translation elongation factor 1-α (TEF), reductase (RED) and phosphate permease (PHO) in 100 F. culmorum isolates with 11 isolates of Fusarium crookwellense, Fusarium graminearum and Fusarium pseudograminearum. Phylogenetic analysis of multilocus sequence (MLS) data using Bayesian inference and maximum parsimony analysis showed that F. culmorum from wheat is a single phylogenetic species with no significant linkage disequilibrium and little or no lineage development along geographic origin. Both MLS and TEF and RED gene sequence analysis separated the four Fusarium species used and delineated three to four groups within the F. culmorum clade. But the PHO gene could not completely resolve isolates into their respective species. Fixation index and gene flow suggest significant genetic exchange between the isolates from distant geographic regions. A lack of strong lineage structure despite the geographic separation of the three collections indicates a frequently recombining species and/or widespread distribution of genotypes due to international trade, tourism and long-range dispersal of macroconidia. Moreover, the two mating type genes were present in equal proportion among the F. culmorum collection used in this study, leaving open the possibility of sexual reproduction.  相似文献   

19.
Fusarium head blight caused by Fusarium graminearum is a disease of cereal crops that not only reduces crop yield and quality but also results in contamination with trichothecenes such as nivalenol and deoxynivalenol (DON). To analyze the trichothecene induction mechanism, effects of 12 carbon sources on the production of DON and 3-acetyldexynivalenol (3ADON) were examined in liquid cultures incubated with nine strains of 3ADON-producing F. graminearum. Significantly high levels of trichothecene (DON and 3ADON) production by sucrose, 1-kestose and nystose were commonly observed among all of the strains tested. On the other hand, the levels of trichothecene biosynthesis induced by the other carbon sources were strain-specific. Tri4 and Tri5 expressions were up-regulated in the sucrose-containing medium but not in glucose. Trichothecene accumulation in the sucrose-containing medium was not repressed by the addition of glucose, indicating that trichothecene production was not regulated by carbon catabolite repression. These findings suggest that F. graminearum recognizes sucrose molecules, activates Tri gene expression and induces trichothecene biosynthesis.  相似文献   

20.
The Ascomycete pathogen Fusarium graminearum can infect all cereal species and lower grain yield, quality and safety. The fungus can also cause disease on Arabidopsis thaliana. In this study, the disease-causing ability of two F. graminearum mutants was analysed to further explore the parallels between the wheat (Triticum aestivum) and Arabidopsis floral pathosystems. Wild-type F. graminearum (strain PH-1) and two isogenic transformants lacking either the mitogen-activated protein kinase MAP1 gene or the trichodiene synthase TRI5 gene were individually spray- or point-inoculated onto Arabidopsis and wheat floral tissue. Disease development was quantitatively assessed both macroscopically and microscopically and deoxynivalenol (DON) mycotoxin concentrations determined by enzyme-linked immunosorbent assay (ELISA). Wild-type strain inoculations caused high levels of disease in both plant species and significant DON production. The map1 mutant caused minimal disease and DON accumulation in both hosts. The tri5 mutant, which is unable to produce DON, exhibited reduced pathogenicity on wheat ears, causing only discrete eye-shaped lesions on spikelets which failed to infect the rachis. By contrast, the tri5 mutant retained full pathogenicity on Arabidopsis floral tissue. This study reveals that DON mycotoxin production is not required for F. graminearum to colonize Arabidopsis floral tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号