首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ectonucleoside triphosphate diphosphohydrolases (NTPDases) control extracellular nucleotide concentrations, thereby modulating many important biological responses, including blood clotting and pain perception. NTPDases1-4 are oligomeric integral membrane proteins, whereas NTPDase5 (CD39L4) and NTPDase6 (CD39L2) are soluble monomeric enzymes, making them more amenable to thorough structural and functional analyses than the membrane-bound forms. Therefore, we report here the bacterial expression, refolding, purification, and biochemical characterization of the soluble portion of human NTPDase6. Consistent with the enzyme expressed in mammalian cells, this recombinant NTPDase6 efficiently hydrolyzes GDP, IDP, and UDP (specific activity of approximately 50000 micromol mg(-1) h(-1)), with slower hydrolysis of CDP, ITP, GTP, CTP, ADP, and UTP and virtually no hydrolysis of ATP. The K(m) for GDP (130 +/- 30 microM) is similar to that determined for the soluble rat NTPDase6 expressed in mammalian cells. The secondary structure of the refolded enzyme was determined by circular dichroism to be 33% alpha-helix, 18% beta-sheet, and 49% random coil, consistent with the secondary structure predicted from the amino acid sequence of soluble NTPDase6. Four of the five cysteine residues in the soluble NTPDase6 are highly conserved among all the NTPDases, while the fifth residue is not. Mutation of this nonconserved cysteine resulted in an enzyme very similar to wild type in its enzymology and secondary structure, indicating that this cysteine exists as a free sulfhydryl and is not essential for structure or function. The disulfide pairing of the other four cysteine residues was determined as Cys(249)-Cys(280) and Cys(340)-Cys(354) by HPLC and mass spectral analysis of tryptic peptides. Due to conservation of these cysteine residues, these two disulfide bonds are likely to exist in all NTPDases. A structural model for NTPDase6, incorporating these and other findings obtained with other NTPDases, is proposed.  相似文献   

2.
The protein family of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase family) contains multiple members that hydrolyze nucleoside 5'-triphosphates and nucleoside 5'-diphosphates with varying preference for the individual type of nucleotide. We report the cloning and functional expression of rat NTPDase3. The rat brain-derived cDNA has an open reading frame of 1590 bp encoding 529 amino acid residues, a calculated molecular mass of 59.1 kDa and predicted N- and C-terminal hydrophobic sequences. It shares 94.3% and 81.7% amino acid identity with the mouse and human NTPDase3, respectively, and is more closely related to cell surface-located than to the intracellularly located members of the enzyme family. The NTPDase3 gene is allocated to chromosome 8q32 and organized into 11 exons. Rat NTPDase3 expressed in CHO cells hydrolyzed both nucleoside triphosphates and nucleoside diphosphates with hydrolysis ratios of ATP:ADP of 5:1 and UTP:UDP of 8:1. After addition of ATP, ADP is formed as an intermediate product that is further hydrolyzed to AMP. The enzyme is preferentially activated by Ca(2+) over Mg(2+) and reveals an alkaline pH optimum. Immunocytochemistry confirmed expression of heterologously expressed NTPDase3 to the surface of CHO cells. PC12 cells express endogenous surface-located NTPDase3. An immunoblot analysis detects NTPDase3 in all rat brain regions investigated. An alignment of the secondary structure domains of actin conserved within the actin/HSP70/sugar kinase superfamily to those of all members of the NTPDase family reveals apparent similarity. It infers that NTPDases share the two-domain structure with members of this enzyme superfamily.  相似文献   

3.
We have previously showed that Schistosoma mansoni ATP-diphosphohydrolase and Solanum tuberosum potato apyrase share epitopes and the vegetable protein has immunostimulatory properties. Here, it was verified the in situ cross-immunoreactivity between mice NTPDases and anti-potato apyrase antibodies produced in rabbits, using confocal microscopy. Liver samples were taken from Swiss Webster mouse 8 weeks after infection with S. mansoni cercariae, and anti-potato apyrase and TRITC-conjugated anti-rabbit IgG antibody were tested on cryostat sections. The results showed that S. mansoni egg ATP diphosphohydrolase isoforms, developed by anti-potato apyrase, are expressed in miracidial and egg structures, and not in granulomatous cells and hepatic structures (hepatocytes, bile ducts, and blood vessels). Therefore, purified potato apyrase when inoculated in rabbit generates polyclonal sera containing anti-apyrase antibodies that are capable of recognizing specifically S. mansoni ATP diphosphohydrolase epitopes, but not proteins from mammalian tissues, suggesting that autoantibodies are not induced during potato apyrase immunization. A phylogenetic tree obtained for the NTPDase family showed that potato apyrase had lower homology with mammalian NTPDases 1-4, 7, and 8. Further analysis of potato apyrase epitopes could implement their potential use in schistosomiasis experimental models.  相似文献   

4.
Cell membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are homooligomeric, with native quaternary structure required for maximal enzyme activity. In this study, we mutated lysine 79 in human ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). The residue corresponding to lysine 79 in NTPDase3 is conserved in all known cell surface membrane NTPDases (NTPDase1, 2, 3, and 8), but not in the soluble, monomeric NTPDases (NTPDase5 and 6), or in the intracellular, two transmembrane NTPDases (NTPDase4 and 7). This conserved lysine is located between apyrase conserved region 1 (ACR1) and an invariant glycosylation site (N81), in a region previously hypothesized to be important for NTPDase3 oligomeric structure. This lysine residue was mutated to several different amino acids, and all mutants displayed substantially decreased nucleotidase activities. A basic amino acid at this position was found to be important for the increase of nucleotidase activity observed after treatment with the lectin, concanavalin A. After solubilization with Triton X-100, mutants showed little or no decrease in activity, unlike the wild-type enzyme, suggesting that the lysine at this position may be important for maintaining proper folding and for stabilizing the quaternary structure. However, mutation at this site did not result in global changes in tertiary or quaternary structure as measured by Cibacron blue binding, chemical cross linking, and native gel electrophoretic analysis, leaving open the possibility of other mechanisms by which mutation of this conserved lysine residue might decrease enzyme activity.  相似文献   

5.
A novel mammalian plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase), named NTPDase8, has been cloned and characterized. Analysis of cDNA reveals an open reading frame of 1491 base pairs encoding a protein of 497 amino acid residues with an estimated molecular mass of 54650 Da and a predicted isoelectric point of 5.94. In a mouse, the genomic sequence is located on chromosome 2A3 and is comprised of 10 exons. The deduced amino acid sequence reveals eight putative N-glycosylation sites, two transmembrane domains, five apyrase-conserved regions, and 20-50% amino acid identity with other mammalian NTPDases. mRNA expression was detected in liver, jejunum, and kidney. Both intact cells and crude cell lysates from COS-7 cells expressing NTPDase8 hydrolyzed P2 receptor agonists, namely, ATP, ADP, UTP, and UDP, but did not hydrolyze AMP. There was an absolute requirement for divalent cations for the catalytic activity (Ca(2+) > Mg(2+)) with an optimal pH between 5.5 and 8.0 for ATP and 6.4 for ADP hydrolysis. Kinetic parameters derived from analysis of crude cell lysates showed that the enzyme had lower apparent K(m) values for adenine nucleotides and for triphosphonucleosides (K(m,app) of 13 microM for ATP, 41 microM for ADP, 47 microM for UTP, and 171 microM for UDP). Hydrolysis of triphosphonucleosides resulted in a transient accumulation of the corresponding diphosphonucleoside, as expected from the apparent K(m) values. Enzymatic properties of NTPDase8 differ from those of other NTPDases suggesting an alternative way to modulate nucleotide levels and consequently P2 receptor activation.  相似文献   

6.
N-linked glycosylation is important for the function, cellular localization, and oligomerization of membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases). NTPDase3 is a prototypical cell membrane-associated eNTPDase, which is equally related and enzymatically intermediate to the other two cell surface membrane NTPDases (NTPDase1 and 2). The protein sequence of NTPDase3 contains seven putative N-glycosylation sites located in the ecto-domain. Only one of these putative glycosylation sites, asparagine 81 in NTPDase3, which is located near apyrase conserved region 1 (ACR1), is invariant in all the cell surface membrane eNTPDases. Using site-directed mutagenesis, mutants were constructed to eliminate this highly conserved N-glycosylation site in NTPDase3. The results indicate that glycosylation at this position is essential for full enzymatic activity, with mutant ATPase activity decreased more than ADPase activity. Enzymatic deglycosylation of this site is shown to be responsible for the inactivation of the wild-type enzyme by treatment with peptide N-glycosidase-F. In addition, glycosylation of this conserved site is necessary for the stabilization/stimulation of nucleotidase activity upon treatment with the lectin concanavalin A. However, lack of glycosylation at this site did not result in large changes in tertiary or quaternary structure, as measured by Cibacron blue binding, chemical cross-linking, and native gel electrophoretic analysis. Since this N-glycosylation site is invariant in cell membrane eNTPDases, it is postulated that glycosylation of this residue near ACR1 is crucial for full enzymatic activity of the cell membrane NTPDases.  相似文献   

7.
Considering that adrenal glands possess a variety of purinoceptors associated with various cell types and that some of these cells (chromaffin cells) secrete large amounts of adenine nucleotides, it was of interest to localize nucleoside triphosphate diphosphohydrolase (NTPDase) in these glands and to define the biochemical characteristics of this ectonucleotidase. Immunolocalization produced a moderate reaction in capsula and medulla, with no signal in zona glomerulosa and zona reticularis. In contrast, a very strong reaction was found in zona fasciculata. Biochemical analysis of particulate fractions isolated from whole glands revealed high levels of ATPase and ADPase activities. This appeared to be attributable to the NTPDase since the level of ADPase was as high as ATPase. Both ATPase and ADPase activities were similarly inhibited by sodium azide. Additionally electrophoretograms with these two substrates showed comparable patterns. Western blots with 'Ringo', an antibody that recognizes the different isoforms of mammalian NTPDases, showed the presence of isoforms of NTPDases at 54 and 78 kDa, respectively. Interestingly, the 54 kDa isoform remains in the supernatant of a chromaffin granule lysate after ultracentrifugation. Up until now little interest has been given to the relationship between adrenal medulla and cortex. Presence of purinoceptors and ectonucleotidases in both these regions together with the effects of ATP in vivo and in vitro in different species indicate that purines play a significant role in adrenal glands.  相似文献   

8.
Ectonucleotidases modulate purinergic signaling by hydrolyzing ATP to adenosine. Here we characterized the impact of the cellular distribution of hepatic ectonucleotidases, namely nucleoside triphosphate diphosphohydrolase (NTPDase)1/CD39, NTPDase2/CD39L1, NTPDase8, and ecto-5'-nucleotidase/CD73, and of their specific biochemical properties, on the levels of P1 and P2 receptor agonists, with an emphasis on adenosine-producing CD73. Immunostaining and enzyme histochemistry showed that the distribution of CD73 (protein and AMPase activity) overlaps partially with those of NTPDase1, -2, and -8 (protein levels and ATPase and ADPase activities) in normal rat liver. CD73 is expressed in fibroblastic cells located underneath vascular endothelial cells and smooth muscle cells, which both express NTPDase1, in portal spaces in a distinct fibroblast population next to NTPDase2-positive portal fibroblasts, and in bile canaliculi, together with NTPDase8. In fibrotic rat livers, CD73 protein expression and activity are redistributed but still overlap with the NTPDases mentioned. The ability of the observed combinations of ectonucleotidases to generate adenosine over time was evaluated by reverse-phase HPLC with the recombinant rat enzymes at high "inflammatory" (500 μM) and low "physiological" (1 μM) ATP concentrations. Overall, ATP was rapidly converted to adenosine by the NTPDase1+CD73 combination, but not by the NTPDase2+CD73 combination. In the presence of NTPDase8 and CD73, ATP was sequentially dephosphorylated to the CD73 inhibitor ADP, and then to AMP, thus resulting in a delayed formation of adenosine. In conclusion, the specific cellular cocompartmentalization of CD73 with hepatic NTPDases is not redundant and may lead to the differential activation of P1 and P2 receptors, under normal and fibrotic conditions.  相似文献   

9.
Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8   总被引:1,自引:1,他引:0  
Nucleoside triphosphate diphosphohydrolases 1, 2, 3 and 8 (NTPDases 1, 2, 3 and 8) are the dominant ectonucleotidases and thereby expected to play important roles in nucleotide signaling. Distinct biochemical characteristics of individual NTPDases should allow them to regulate P2 receptor activation differentially. Therefore, the biochemical and kinetic properties of these enzymes were compared. NTPDases 1, 2, 3 and 8 efficiently hydrolyzed ATP and UTP with Km values in the micromolar range, indicating that they should terminate the effects exerted by these nucleotide agonists at P2X1–7 and P2Y2,4,11 receptors. Since NTPDase1 does not allow accumulation of ADP, it should terminate the activation of P2Y1,12,13 receptors far more efficiently than the other NTPDases. In contrast, NTPDases 2, 3 and 8 are expected to promote the activation of ADP specific receptors, because in the presence of ATP they produce a sustained (NTPDase2) or transient (NTPDases 3 and 8) accumulation of ADP. Interestingly, all plasma membrane NTPDases dephosphorylate UTP with a significant accumulation of UDP, favoring P2Y6 receptor activation. NTPDases differ in divalent cation and pH dependence, although all are active in the pH range of 7.0–8.5. Various NTPDases may also distinctly affect formation of extracellular adenosine and therefore adenosine receptor-mediated responses, since they generate different amounts of the substrate (AMP) and inhibitor (ADP) of ecto-5-nucleotidase, the rate limiting enzyme in the production of adenosine. Taken together, these data indicate that plasma membrane NTPDases hydrolyze nucleotides in a distinctive manner and may therefore differentially regulate P2 and adenosine receptor signaling.  相似文献   

10.
In many vertebrate tissues CD39-like ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) act in concert with ecto-5′-nucleotidase (e5NT, CD73) to convert extracellular ATP to adenosine. Extracellular ATP is a cytotoxic, pro-inflammatory signalling molecule whereas its product adenosine constitutes a universal and potent immune suppressor. Interference with these ectonucleotidases by use of small molecule inhibitors or inhibitory antibodies appears to be an effective strategy to enhance anti-tumour immunity and suppress neoangiogenesis. Here we present the first crystal structures of an NTPDase catalytic ectodomain in complex with the Reactive Blue 2 (RB2)-derived inhibitor PSB-071. In both of the two crystal forms presented the inhibitor binds as a sandwich of two molecules at the nucleoside binding site. One of the molecules is well defined in its orientation. Specific hydrogen bonds are formed between the sulfonyl group and the nucleoside binding loop. The methylphenyl side chain functionality that improved NTPDase2-specificity is sandwiched between R245 and R394, the latter of which is exclusively found in NTPDase2. The second molecule exhibits great in-plane rotational freedom and could not be modelled in a specific orientation. In addition to this structural insight into NTPDase inhibition, the observation of the putative membrane interaction loop (MIL) in two different conformations related by a 10° rotation identifies the MIL as a dynamic section of NTPDases that is potentially involved in regulation of catalysis.  相似文献   

11.
Alcohol abuse is an acute health problem throughout the world and alcohol consumption is linked to the occurrence of several pathological conditions. Here we tested the acute effects of ethanol on NTPDases (nucleoside triphosphate diphosphohydrolases) and 5'-nucleotidase in zebrafish (Danio rerio) brain membranes. The results have shown a decrease on ATP (36.3 and 18.4%) and ADP (30 and 20%) hydrolysis after 0.5 and 1% (v/v) ethanol exposure during 60 min, respectively. In contrast, no changes on 5'-nucleotidase activity were observed in zebrafish brain membranes. Ethanol in vitro did not alter ATP and ADP hydrolysis, but AMP hydrolysis was inhibited at 0.5, and 1% (23 and 28%, respectively). Acetaldehyde in vitro, in the range 0.5-1%, inhibited ATP (40-85%) and ADP (28-65%) hydrolysis, whereas AMP hydrolysis was reduced (52, 58 and 64%) at 0.25, 0.5 and 1%, respectively. Acetate in vitro did not alter these enzyme activities. Semi-quantitative expression analysis of NTPDase and 5'-nucleotidase were performed. Ethanol treatment reduced NTPDase1 and three isoforms of NTPDase2 mRNA levels. These findings demonstrate that acute ethanol intoxication may influence the enzyme pathway involved in the degradation of ATP to adenosine, which could affect the responses mediated by adenine nucleotides and nucleosides in zebrafish central nervous system.  相似文献   

12.
Over the last seven years our laboratory has focused on the determination of the structural aspects of nucleoside triphosphate diphosphohydrolases (NTPDases) using site-directed mutagenesis and computational comparative protein modeling to generate hypotheses and models for the hydrolytic site and enzymatic mechanism of the family of NTPDase nucleotidases. This review summarizes these studies utilizing NTPDase3 (also known as CD39L3 and HB6), an NTPDase family member that is intermediate in its characteristics between the more widely distributed and studied NTPDase1 (also known as CD39) and NTPDase2 (also known as CD39L1 and ecto-ATPase) enzymes. Relevant site-directed mutagenesis studies of other NTPDases are also discussed and compared to NTPDase3 results. It is anticipated that many of the results and conclusions reached via studies of NTPDase3 will be relevant to understanding the structure and enzymatic mechanism of all the cell-surface members of this family (NTPDase1–3, 8), and that understanding these NTPDase enzymes will aid in modulating the many varied processes under purinergic signaling control. This review also integrates the site-directed mutagenesis results with a recent 3-D structural model for the extracellular portion of NTPDases that helps explain the importance of the apyrase conserved regions (ACRs) of the NTPDases. Utilizing this model and published work from Dr Guidotti's laboratory concerning the importance and characteristics of the two transmembrane helices and their movements in response to substrate, we present a speculative cartoon model of the enzymatic mechanism of the membrane-bound NTPDases that integrates movements of the extracellular region required for catalysis with movements of the N- and C-terminal transmembrane helices that are important for control and modulation of enzyme activity.  相似文献   

13.
The ecto‐nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes found on the cell surface and in the lumen of certain organelles, that are major regulators of purinergic signaling. Their intracellular roles, however, have not been clearly defined. NTPDase4 (UDPase, ENTPD4) is a Golgi protein potentially involved in nucleotide recycling as part of protein glycosylation, and is also found in lysosomes, where its purpose is unknown. To further our understanding of NTPDase4 function, we determined its crystal structure. The enzyme adopts a wide open, inactive conformation. Differences in the nucleotide‐binding site relative to its homologs could account for its substrate selectivity. The putative membrane‐interacting loop of cell‐surface NTPDases is drastically altered in NTPDase4, potentially affecting its interdomain dynamics at the Golgi membrane.  相似文献   

14.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

15.
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are membrane-bound ectoenzymes that hydrolyze extracellular nucleotides. We investigated the distribution of NTPDase1 and NTPDase2 in murine salivary gland and pancreas. Histochemistry and immunostaining (by both light and electron microscopy), combined with functional assays, were used to describe the localization patterns and enzyme activities in the organs of wild-type and NTPDase1/cd39-null mice. Pancreatic acinar cells and salivary gland acinar/myoepithelial cells were positive for NTPDase1 and NTPDase2. Ecto-ATPase activity was slightly higher in salivary glands. Ductal epithelial cells expressed ecto-ATPase activity but NTPDase1 and NTPDase2 expression were weak at best. ATPase activity was found in blood vessels of both tissues and its localization pattern overlapped with NTPDase1 staining. In these structures, NTPDase2 antibodies stained the basolateral aspect of endothelial cells and the supporting cells. Biochemical assays and histochemical staining showed relatively high levels of ATPase activity in both glands of cd39(-/-) mice. Our data therefore support a physiological role for NTPDase2 and other ectonucleotidases in the pancreas and salivary glands. Because NTPDase1 is expressed in non-vascular cell types, this finding suggests that NTPDase1 may have functions in the gastrointestinal tract that differ from those demonstrated in the vascular system.  相似文献   

16.

Background  

Brain-derived ectonucleoside triphosphate diphosphohydrolases (NTPDases) have been known as plasma membrane-incorporated enzymes with their ATP-hydrolyzing domain outside of the cell. As such, these enzymes are thought to regulate purinergic intercellular signaling by hydrolyzing ATP to ADP-AMP, thus regulating the availability of specific ligands for various P2X and P2Y purinergic receptors. The role of NTPDases in the central nervous system is little understood. The two major reasons are the insufficient knowledge of the precise localization of these enzymes in neural structures, and the lack of specific inhibitors for the various NTPDases. To fill these gaps, we recently studied the presence of neuron-specific NTPDase3 in the mitochondria of hypothalamic excitatory neurons by morphological and functional methods. Results from those studies suggested that intramitochondrial regulation of ATP levels may play a permissive role in the neural regulation of physiological functions by tuning the level of ATP-carried energy that is needed for neuronal functions, such as neurotransmission and/or intracellular signaling.  相似文献   

17.
The ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases) are a family of enzymes that control the levels of extracellular nucleotides, thereby modulating purinergically controlled physiological processes. Six of the eight known NTPDases are membrane-bound enzymes; only NTPDase 5 and 6 can be released as soluble enzymes. Here we report the first bacterial expression and refolding of soluble human NTPDase5 from inclusion bodies. The results show that NTPDase5 requires the presence of divalent cations (Mg2+ or Ca2+) for activity. Positive cooperativity with respect to hydrolysis of its preferred substrates (GDP, IDP and UDP) is observed, and this positive cooperativity is attenuated in the presence of nucleoside monophosphate products (e.g., GMP and AMP). In addition, comparing the biochemical properties of wild-type NTPDase5 and those of a mutant NTPDase5 (C15S, which lacks the single, non-conserved cysteine residue), also expressed in bacteria, suggests that Cys15 is not essential for either proper refolding or enzymatic activity (indicating this residue is not involved in a disulfide bond). Moreover, the substrate profile of bacterially expressed NTPDase5, as well as the C15S mutant, was determined to be similar to that of full-length, membrane-bound and soluble NTPDase5 expressed in mammalian COS cells.  相似文献   

18.
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a physiologically important class of membrane-bound ectonucleotidases responsible for the regulation of extracellular levels of nucleotides. CD39 or NTPDase1 is the dominant NTPDase of the vasculature. By hydrolyzing proinflammatory ATP and platelet-activating ADP to AMP, it blocks platelet aggregation and supports blood flow. Thus, great interest exists in understanding the structure and dynamics of this prototype member of the eukaryotic NTPDase family. Here, we report the crystal structure of a variant of soluble NTPDase1 lacking a putative membrane interaction loop identified between the two lobes of the catalytic domain. ATPase and ADPase activities of this variant are determined via a newly established kinetic isothermal titration calorimetry assay and compared to that of the soluble NTPDase1 variant characterized previously. Complex structures with decavanadate and heptamolybdate show that both polyoxometallates bind electrostatically to a loop that is involved in binding of the nucleobase. In addition, a comparison of the domain orientations of the four independent proteins in the crystal asymmetric unit provides the first direct experimental evidence for a domain motion of NTPDases. An interdomain rotation angle of up to 7.4° affects the active site cleft between the two lobes of the protein. Comparison with a previously solved bacterial NTPDase structure indicates that the domains may undergo relative rotational movements of more than 20°. Our data support the idea that the influence of transmembrane helix dynamics on activity is achieved by coupling to a domain motion.  相似文献   

19.
We investigated NTPDase-like activity [ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases)] in liver and kidney membrane from silver catfish (Rhamdia quelen), chicken (Gallus gallus) and rat (Rattus norvegicus) under different conditions and in the presence of several inhibitors. The cation concentration required for maximal activity was 0.5, 1.5 and 2.0 mM for fish, chicken and rat liver, respectively (with ATP and ADP as substrates). The maximal activity in the kidney was observed at calcium concentrations of 0.5, 2.0, 1.5 mM (ATP) and 0.5, 1.5, 1.0 (ADP) for fish, chickens and rats, respectively. The results showed that the pH optimum for all animals and for the two tissues was close to 8.0. The temperature chosen was 25 °C for fish and 36 °C for chicken and rat preparations. Ouabain had no effect on the NTPDase-like activity of fish, chickens or rats. NTPDase activity was decreased in the presence of lanthanum in the chicken (ADP) and rat (ATP and ADP) liver. In the kidney, lanthanum inhibited fish ATP and rat ATP and ADP (0.2 mM) hydrolysis. N-ethylmaleimide (NEM) had an inhibitory effect on the kidney of all species at the concentration of 3.0 mM (ADP). Orthovanadate only inhibited fish membrane NTPDase; azide only inhibited the preparation at high concentrations (10 mM) and fluoride inhibited it at 10 mM (fish and chicken) and 5 mM (rat). Trifluoperazine (0.05–0.2 mM) and suramin (0.03–0.3 mM) inhibited NTPDase at all concentrations tested. These results suggest that NTPDase-like activity shows a different behavior among the vertebrate species and tissues studied. Additionally, we propose that NTPDase1 is the main enzyme present in this preparation.  相似文献   

20.
We report here that induction of ectoATPase by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is cell-type specific and not a generalized response to aryl hydrocarbon (Ah) receptor activation. TCDD increased [14C]-ATP and -ADP metabolism in two mouse hepatoma lines, Hepa1c1c7 and Hepa1-6 cells, but not in human hepatoma HepG2 or HuH-7 cells, human umbilical vein endothelial cells (HUVEC), chick hepatoma (LMH) cells, or chick primary hepatocytes or cardiac myocytes, even though all of those cell types were Ah receptor-responsive, as evidenced by cytochrome P4501A induction. To determine whether the differences in ectonucleotidase responsiveness to TCDD might be related to differences in cell-type ectonucleotidase expression, ATP and ADP metabolite patterns, the products of several classes of ectonucleotidases including ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), ectophosphodiesterase/pyrophosphatases (E-NPP enzymes) and ectoalkaline phosphatase activities were examined. Those patterns, together with results of enzyme assays, Western blotting, or semiquantitative RT-PCR show that NTPDase2 is the main ectonucleotidase for murine and human hepatoma cells, NTPDase3 for chick hepatocytes and LMH cells, and an E-NPP enzyme for chick cardiac myocytes. Evidence for NTPDase2 expression was lacking in all cells except the mouse and human hepatoma cells. TCDD increased expression of the NTPDase2 gene but only in the mouse and not in the human hepatoma cells. TCDD did not increase NTPDase3, NTPDase1, E-NPP, or alkaline phosphatase in any of the cell types examined. The failure of TCDD to increase ATP metabolism in HUVEC, chick LMH cells, hepatocytes, and cardiac myocytes can be attributed to their lack of NTPDase2 expression, while the increase in ATP metabolism by TCDD in the mouse but not the human hepatoma cells can be explained by differences in TCDD effects on mouse and human hepatoma NTPDase2 gene expression. In addition to characterizing effects of TCDD on ectonucleotidases, these studies reveal major differences in the complements of ectonucleotidases present in different cell types. It is likely that such differences are important for cell-specific susceptibility to extracellular nucleotide toxicity and responses to purinergic signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号