首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mollusc shells are composed of two or three layers. The main layers are well‐studied, but the structural and chemical changes at their boundaries are usually neglected. A microstructural, mineralogical, and biochemical study of the boundary between the inner crossed lamellar and outer prismatic layers of the shell of Concholepas concholepas showed that this boundary is not an abrupt transition. Localized structural and chemical analyses showed that patches of the inner aragonitic crossed lamellar layer persist within the outer calcitic prismatic layer. Moreover, a thin aragonitic layer with a fibrous structure is visible between the two main layers. A three‐step biomineralization process is proposed that involves changes in the chemical and biochemical composition of the last growth increments of the calcite prisms. The changes in the secretory process in the mantle cells responsible for the shell layer succession are irregular and discontinuous.  相似文献   

2.
Anthropogenic ocean acidification is likely to have negative effects on marine calcifying organisms, such as shelled pteropods, by promoting dissolution of aragonite shells. Study of shell dissolution requires an accurate and sensitive method for assessing shell damage. Shell dissolution was induced through incubations in CO2‐enriched seawater for 4 and 14 days. We describe a procedure that allows the level of dissolution to be assessed and classified into three main types: Type I with partial dissolution of the prismatic layer; Type II with exposure of underlying crossed‐lamellar layer, and Type III, where crossed‐lamellar layer shows signs of dissolution. Levels of dissolution showed a good correspondence to the incubation conditions, with the most severe damage found in specimens held for 14 days in undersaturated condition (Ω ~ 0.8). This methodology enables the response of small pelagic calcifiers to acidified conditions to be detected at an early stage, thus making pteropods a valuable bioindicator of future ocean acidification.  相似文献   

3.
The microstructure of aragonitic and calcitic shells of the genus Palaeomutela Amalitzky, 1891 is examined. The aragonitic shell consists of three main layers, each is distinguished by certain crossed lamellar microstructure: comarginal, radial, and complex. As aragonite is recrystallized into pelitic calcite, microstructural shell features are preserved. Many species of Palaeomutela from localities of different age display the same microstructural pattern, which is possible to regard as a character of generic rank.  相似文献   

4.
Yan Z  Fang Z  Ma Z  Deng J  Li S  Xie L  Zhang R 《Biochimica et biophysica acta》2007,1770(9):1338-1344
Calmodulin-like protein (CaLP) was believed to be involved in the shell formation of pearl oyster. However, no further study of this protein was ever performed. In this study, the in vitro crystallization experiment showed that CaLP can modify the morphology of calcite. In addition, aragonite crystals can be induced in the mixture of CaLP and a nacre protein (at 16 kDa), which was detected and purified from the EDTA-soluble matrix of nacre. These results agreed with that of immunohistological staining in which CaLP was detected not only in the organic layer sandwiched between nacre (aragonite) and the prismatic layer (calcite), but also around the prisms of the prismatic layer. Take together, we concluded that (1) CaLP, as a component of the organic layer, can induce the nucleation of aragonite through binding with the 16-kDa protein, and (2) CaLP may regulate the growth of calcite in the prismatic layer.  相似文献   

5.
冯伟民 《古生物学报》1994,33(5):635-645
腹足类个体发育中壳质结构的重要特点是壳质层的微观变化,包括原有壳质层的增厚、增生与上覆超微结构相同的壳质层、增生新的超微结构层、壳质层的相互消长与显微结构的演变。壳质层的微观变化决定了壳饰形成的4种类型:增厚型、刺顶型、刺穿型、叠覆型。叠覆的交错片体具加强贝壳抗破裂功能;交错片体排列方式的变化或新的显微结构层的出现均具分类意义。交错针状结构源于纤柱结构,纤柱结构又由简单柱状结构演变而来。  相似文献   

6.
Deposits composed of aragonite prisms, which were formed afterthe outer shell layer, have been found at the posterior steepslopes of divaricate ribs in two species of Strigilla and anothertwo of Solecurtus. These prisms have their axes oriented perpendicularto the outer shell surface and differ in morphology from fibresof the surface-parallel composite prisms forming the outer shell.They display crystalline features indicating that, unlike crystalsforming the outer shell surface, their growth front was free,unconstrained by the mantle or periostracum. These particulardeposits are called free-growing prisms (FGPs). In these generathe periostracum is clearly not the substrate for biomineralizationand, upon formation, does not adhere to the steep slope of ribs,but detaches at the rib peak and reattaches towards the posterior,just beyond the foot of the posterior scarps of ribs. In thisway, a sinus or open space developed between the internal surfaceof the periostracum and the outer shell surface along each steeprib slope. These spaces could remain filled with extrapallialfluid after the mantle advances beyond that point during shellsecretion. FGPs grow within this microenvironment, out of contactwith the mantle. Other species with divaricate ribs do not developFGPs simply because the periostracum adheres tightly to both ribslopes (which are never so steep as in Solecurtus and Strigilla).FGPs constitute one of the rare cases of remote biomineralizationin which aragonite is produced and direct contact with the mantlenever takes place. (Received 22 November 1999; accepted 20 February 2000)  相似文献   

7.
Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.  相似文献   

8.
Charonia lampas lampas shell is studied using scanning electron microscopy and X-ray diffraction combined analysis of the preferred orientations and cell parameters. The Charonia shell is composed of three crossed lamellar layers of biogenic aragonite. The outer layer exhibits a 0 0 1 fibre texture, the intermediate crossed lamellar layer is radial with a split of its c-axis and single twin pattern of its a-axis, and the inner layer is comarginal with split c-axis and double twinning. A lost of texture strength is quantified from the inner layer outward. Unit-cell refinements evidence the intercrystalline organic influence on the aragonite unit-cell parameters anisotropic distortion and volume changes in the three layers. The simulation of the macroscopic elastic tensors of the mineral part of the three layers, from texture data, reveals an optimisation of the elastic coefficient to compression and shear in all directions of the shell as an overall.  相似文献   

9.
Changes in gonadal histology were used to determine the reproductivecycles of three trochid gastropods commonly found along theTranskei coast. They were dioecious, the sexes being evenlydistributed both in terms of numbers and size. Despite someasynchrony, Monodonta australis had a distinct reproductivecycle with a short inactive period during the winter, gonadaldevelopment coincided with increasing sea temperatures and spawningtook place from late summer to autumn. Both Oxystele tabularisand O. variegata exhibited asynchronous intermittent spawningthroughout the study period. However, intensified spawning activityby O. tabularis was noted between April and September. The reproductivecycles and mechanisms of these trochids are compared with thoseelsewhere. (Received 20 January 1986;  相似文献   

10.
The prisms in the shell of Mytilus edulis Linné are calcite needles. Their small size and their thin conchiolin cases distinguish them from the prisms of many other species of mollusks. These Mytilus prisms have been studied with the electron microscope. The material consisted of positive replicas of surfaces of the prismatic layer, etched with chelating agents, and of preparations of tubular cases from decalcified prisms which were compared with the conchiolin from decalcified mother-of-pearl of the same species. In the replicas, the cases appear as thin pellicles in the intervals between the prism crystals. Both the prism cases and the nacreous conchiolin, disintegrated by exposure to ultrasonic waves and sedimented on supporting films, appear in the form of tightly meshed, reticulated sheets, described as "tight pelecypod pattern" in former studies on nacreous conchiolin of Mytilus. The results show that in the shell of this species the same conchiolin structure is associated with aragonite in mother-of-pearl and with calcite in the prismatic layer.  相似文献   

11.
The shells of most anomalodesmatan bivalves are composed of an outer aragonitic layer of either granular or columnar prismatic microstructure, and an inner layer of nacre. The Thraciidae is one of the few anomalodesmatan families whose members lack nacreous layers. In particular, shells of members of the genus Thracia are exceptional in their possession of a very distinctive but previously unreported microstructure, which we term herein “dendritic prisms.” Dendritic prisms consist of slender fibers of aragonite which radiate perpendicular to, and which stack along, the axis of the prism. Here we used scanning and transmission electron microscopical investigation of the periostracum, mantle, and shells of three species of Thracia to reconstruct the mode of shell calcification and to unravel the crystallography of the dendritic units. The periostracum is composed of an outer dark layer and an inner translucent layer. During the free periostracum phase the dark layer grows at the expense of the translucent layer, but at the position of the shell edge, the translucent layer mineralizes with the units typical of the dendritic prismatic layer. Within each unit, the c‐axis is oriented along the prismatic axis, whereas the a‐axis of aragonite runs parallel to the long axis of the fibers. The six‐rayed alignment of the latter implies that prisms are formed by {110} polycyclically twinned crystals. We conclude that, despite its distinctive appearance, the dendritic prismatic layer of the shell of Thracia spp. is homologous to the outer granular prismatic or prismatic layer of other anomalodesmatans, while the nacreous layer present in most anomalodesmatans has been suppressed.  相似文献   

12.
Monodonta labio (Gastropoda: Trochidae) occurs in a wide tidal zone on a boulder-covered shore in Amakusa, Japan. To investigate sources of variation in reproductive output within a population, the fecundity ofM. labio was estimated. Regressions of gonad egg counts on shell width were calculated from samples collected bi-weekly at three tidal zones: high, mid and low intertidal. Seasonal fluctuations in the regression revealed that individual females spawn at least three times a year. Variation in fecundity between the three tidal zones was not detected at any time in standard 12 mm snails. Due to the high growth rate in the low zone during the reproductive season, annual fecundity in the low zone was larger than that in the high and mid zones. Thus, tidal zone variation in fecundity ofM. labio was a result of growth variation between tidal zones.  相似文献   

13.
14.
The crystallographic microstructure of Meretrix lusoria shells was investigated using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). Crystallite sizes were determined by XRD analysis as 72 nm, which was quite similar to the 70 nm as measured by SEM. The shell comprised aggregates of hexagonal plates of aragonite (500 nm wide, 70 nm high) and organic matter. These plates were fourth-order units of an aragonitic crossed order lamellar structure. Subsequent TEM images showed the hexagonal plates’ nanostructure. The electron diffraction pattern of the fourth-order units revealed a consistent orientation of the hexagonal plates. The fourth-order lamellae (hexagonal crystallites) were piled up in the [0 0 1] direction to produce slender prisms (third-order lamellae), arranged mutually parallel, thereby forming a broad tablet (second-order lamellae). The second-order lamellae were piled up in different directions to form the first-order lamellae. The orientation level obtained from XRD and SEM images showed that the crossed lamellar layer was piled up curvilinearly, forming semi-circular growth lines. X-ray diffraction patterns of the cross-sections of the middle layer (vertical and parallel to the growth line) showed that the c axes of aragonite have a disposition of about 20° to the growth direction.  相似文献   

15.
Fang D  Pan C  Lin H  Lin Y  Xu G  Zhang G  Wang H  Xie L  Zhang R 《PloS one》2012,7(4):e35715
Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes.  相似文献   

16.
Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large‐scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within‐region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low‐salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic‐enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high‐latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade‐offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.  相似文献   

17.
The genus Xenophora comprises species of marine gastropods (Cretaceous-Recent) able to add fragments of various origins to their shell surface. Agglutination potentials vary, from species lacking attachments to species completely covered by agglutinated materials, as in the Mediterranean species Xenophora crispa. Here, we analyse Recent and fossil specimens of Xenophora crispa from the Mediterranean area using SEM and XRD, to better understand their biomineralization patterns and the mechanisms leading to the agglutination of shells, bioclasts and lithoclasts, and their evolution in time. We also provide new data on poorly studied gastropod shell microstructures. We conclude that: (1) most of the Xenophora crispa shell consists of an aragonitic crossed lamellar fabric, but fibrous to spherulitic prismatic fabrics, seemingly of calcite, have been found in the columella and peripheral edge (the thickest parts of the shell); (2) attachment of objects is mediated by a prismatic microstructure, indicating that this may be the most functional fabric in attachment areas in molluscs; and (3) the functional purpose of the agglutination in Xenophora crispa may be related to a snowshoe strategy to successfully colonize muddy substrates, coupled with tactile and olfactory camouflage. Indeed, this species secretes in the columella and peripheral edge a less dense and a more organic rich calcitic fabric, possibly to lighten the shell thickest parts in order not to sink in soft sediments and to facilitate the shell raising from the substrate to create a protected feeding area. This behaviour seems to have been maintained by X. crispa over 2 My time span.  相似文献   

18.
ABSTRACT

Mollusk shell is a product of biomineralization with excellent mechanical properties, and the shell matrix proteins (SMPs) have important functions in shell formation. A vWA domain-containing protein (VDCP) was identified from the shell of Mytilus coruscus as a novel shell matrix protein. The VDCP gene is expressed at a high level in specific locations in the mantle and adductor muscle. Recombinant VDCP (rVDCP) showed abilities to alter the morphology of both calcite and aragonite, induce the polymorph change of calcite, bind calcite, and decrease the crystallization rate of calcite. In addition, immunohistochemistry analyses revealed the specific location of VDCP in the mantle, the adductor muscle, and the myostracum layer of the shell. Furthermore, a pull-down analysis revealed eight protein interaction partners of VDCP in shell matrices and provided a possible protein–protein interaction network of VDCP in the shell.  相似文献   

19.
Hyoliths were among the earliest biomineralizing metazoans in Palaeozoic marine environments. They have been known for two centuries and widely assigned to lophotrochozoans. However, their origin and relationships with modern lophotrochozoan clades have been a longstanding palaeontological controversy. Here, we provide broad microstructural data from hyolith conchs and opercula from the lower Cambrian Xinji Formation of North China, including two hyolithid genera and four orthothecid genera as well as unidentified opercula. Results show that most hyolith conchs contain a distinct aragonitic lamellar layer that is composed of foliated aragonite, except in the orthothecid New taxon 1 that has a crossed foliated lamellar microstructure. Opercula are mostly composed of foliated aragonite and occasionally foliated calcite. These blade or lath‐like microstructural fabrics coincide well with biomineralization of Cambrian molluscs rather than lophophorates, as exemplified by the Cambrian members of the tommotiid‐brachiopod linage. Accordingly, we propose that hyoliths and molluscs might have inherited their biomineralized skeletons from a non‐mineralized or weakly mineralized common ancestor rather than as a result of convergence. Consequently, from the view of biomineralization, the homologous shell microstructures in Cambrian hyoliths and molluscs strongly strengthen the phylogenetic links between the two groups.  相似文献   

20.
Callocardia hungerfordi (Veneridae: Pitarinae) lives in subtidalmuds (220 to 240m C.D.) and is covered by a dense mat of mudthat, effectively, camouflages the shell. The periostracum is two layered. The inner layer is thick andpleated, the outer thin and perforated. From the outer surfaceof the inner layer develop numerous, delicate (0.5 mm in diameter),calcified, periostracal needles. These penetrate the outer periostracum.Mucus produced from sub-epithelial glands in the inner surfaceof the mantle, slides over the cuticle-covered epithelium ofthe inner and outer surfaces of the inner fold and the innersurface of the middle mantle fold to coat the outer surfaceof the periostracum and its calcified needles. Increased productionat some times produces solidified strands of mucus which bindmud and detrital material into their fabric to create the shellcamouflage. Calcified periostracal needles have been identified in othervenerids, including some members of the Pitarinae, but how theyare secreted and how the covering they attract is producedand, thus, how the whole structure functions, has not been explained. (Received 7 December 1998; accepted 5 February 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号