首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of fumagillin analogues targeted at understanding tolerability of MetAP2 toward substitution at C4 and C6 were synthesized. Initially, the C6 side chain was maintained as cinnamoyl ester and C4 was modified. It was concluded that replacing the natural C4 of fumagillin with a benzyl oxime at C4 resulted in moderate loss of activity toward binding to MetAP2. Placement of a primary or secondary carbamate at C6 did not improve the potency of compounds toward inhibition of MetAP2. However, the inhibitory activity against MetAP2 was gained back by placing polar groups such as piperazinyl carbamate at C6. Small alkyl substituents on the amine of piperazinyl carbamate were well tolerated.  相似文献   

2.
Human methionine aminopeptidase type 2 (hMetAP-2) was identified as the molecular target of anti-angiogenic agents such as fumagillin and its analogues. We describe here the crystal structure of hMetAP-2 in complex with l-methionine and d-methionine at 1.9 and 2.0A resolution, respectively. The comparison of the structure of the two complexes establishes the basis of enantiomer discrimination and provides some considerations for the design of selective MetAP-2 inhibitors.  相似文献   

3.
The carbon and nitrogen source requirements of Aspergillus fumigatus NRRL 2436 for growth and production of the angiogenesis inhibitor fumagillin were studied in chemically defined media. Both carbon and nitrogen sources strongly influenced fumagillin formation. Two out of 29 carbon sources tested interfered with fumagillin biosynthesis. The best combination of two carbon sources was 30 g L(-1) xylan and 50 g L(-1) mannose. Of fifteen nitrogen sources tested, three ammonium salts (chloride, sulfate, and dibasic phosphate) failed to support fumagillin formation, presumably due to the low pH which developed. The dosage-response study of the best nitrogen source, L-glutamic acid, revealed that 9 g L(-1) was optimal. Volumetric production of fumagillin was increased by 15-fold over that in the starting (Peterson-Goldstein) medium as a result of these findings.  相似文献   

4.
The angiogenesis inhibitors fumagillin and TNP-470 selectively inhibit the proliferation of endothelial cells, as compared with most other cell types. The mechanism of this selective inhibition remains uncertain, although methionine aminopeptidase-2 (MetAP2) has recently been found to be a target for fumagillin or TNP-470, which inactivates MetAP2 enzyme activity through covalent modification. Primary cultures of human endothelial cells and six other non-endothelial cell types were treated with fumagillin to determine its effect on cell proliferation. Only the growth of endothelial cells was completely inhibited at low concentrations of fumagillin. MetAP1 and MetAP2 levels in these cells were investigated to determine whether differential enzyme expression plays a role in the selective action of fumagillin. Western blot analysis and RT-PCR data showed that MetAP1 and MetAP2 were both expressed in these different types of cells, thus, ruling out differential expression of MetAP1 and MetAP2 as an explanation for the cell specificity of fumagillin. Expression of MetAP2, but not of MetAP1, is regulated. Treatment of human microvascular endothelial cells (HMVEC) with fumagillin resulted in threefold increases of MetAP2 protein in the cells, while MetAP1 remained constant. Similar upregulation of MetAP2 by exposure to fumagillin was also observed in non-endothelial cells, eliminating this response as an explanation for cell specificity. Taken together, these results indicate that while MetAP2 plays a critical role in the effect of fumagillin on endothelial cell proliferation, differential endogenous expression or fumagillin-induced upregulation of methionine aminopeptidases is not responsible for this observed selective inhibition.  相似文献   

5.
Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.  相似文献   

6.
Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients.  相似文献   

7.
The carbon and nitrogen source requirements of Aspergillus fumigatus NRRL 2436 for growth and production of the angiogenesis inhibitor fumagillin were studied in chemically defined media. Both carbon and nitrogen sources strongly influenced fumagillin formation. Two out of 29 carbon sources tested interfered with fumagillin biosynthesis. The best combination of two carbon sources was 30 g L−1 xylan and 50 g L−1 mannose. Of fifteen nitrogen sources tested, three ammonium salts (chloride, sulfate, and dibasic phosphate) failed to support fumagillin formation, presumably due to the low pH which developed. The dosage-response study of the best nitrogen source, L-glutamic acid, revealed that 9 g L−1 was optimal. Volumetric production of fumagillin was increased by 15-fold over that in the starting (Peterson-Goldstein) medium as a result of these findings. Received: 8 April 2002 / Accepted: 24 June 2002  相似文献   

8.

Background

Inhibition of angiogenesis may impair adipose tissue development.

Methods

The effect of fumagillin (a methionine aminopeptidase-2 inhibitor) on adipocyte differentiation and de novo adipogenesis was investigated in murine model systems.

Results

During in vitro differentiation of murine 3T3-F442A preadipocytes, administration of fumagillin (≥ 1 μM) resulted in reduced expression of methionine aminopeptidase-2, and in enhanced differentiation rate. In vivo, de novo development of adipose tissue following injection of preadipocytes in nude mice kept on high fat diet was somewhat, but not significantly (p = 0.06), reduced by administration of fumagillin (1 mg/kg/day during 4 weeks by oral gavage). This was not associated with effects on blood vessel size or density, whereas blood vessel density normalized to adipocyte density was enhanced upon fumagillin treatment. In vivo BrdU incorporation experiments did not reveal effects of fumagillin on cell proliferation in adipose tissues, and cellular apoptosis was also not affected.Treatment with fumagillin enhances in vitro differentiation of preadipocytes, but has only a minor effect on in vivo adipogenesis.

General Significance

These studies on in vitro and in vivo preadipcoyte differentiation thus do not support an anti-obesity effect of fumagillin as a result of effects on adipocyte differentiation.  相似文献   

9.
Modification of fumagillin was conducted to develop MetAP-2 inhibitors with desirable pharmacological properties. Replacement of the C4 side chain by benzyloxime preserves the inhibitory activity against MetAP-2 enzyme. Fumagillin analogues containing the C4 benzyloxime moiety were found to be very sensitive to the nature of the C6 substituent on the inhibition activity of HUVEC proliferation. This lack of correlation between MetAP-2 and HUVEC activities might be due to the cellular metabolism of the compounds by epoxide hydrolase, which is present in the cell. Compound (E)-3d, containing ethylpiperazinyl carbamate at C6 position, exhibited antiangiogenic effects similar to TNP-470 on matrigel plug assay and rat corneal micropocket assay.  相似文献   

10.
Western honey bee (Apis mellifera) colonies in Nova Scotia, Canada were sampled in spring and late summer 2007 to evaluate efficacy of fumagillin dicyclohexylammonium (hereafter, fumagillin) against Nosema ceranae. Colonies treated with fumagillin in September 2006 (n = 94) had significantly lower Nosema intensity in spring 2007 than did colonies that received no treatment (n = 51), but by late summer 2007 no difference existed between groups. Molecular sequencing of 15 infected colonies identified N. ceranae in 93.3% of cases, suggesting that fumagillin is successful at temporarily reducing this recent invasive parasite in western honey bees.  相似文献   

11.
The anti-angiogenic activity of AGM-1470, a new synthetic analog of fumagillin isolated from Aspergillus fumigatus, was extensively examined both in vitro and in vivo using four different types of assay and compared to that of the fumagillin parent. Locally administered AGM-1470 inhibited the angiogenesis in the chick embryo chorioallantoic membrane assay and the rat corneal assay. In the rat sponge implantation assay, systemically administered AGM-1470 inhibited angiogenesis induced by basic fibroblast growth factor. Furthermore, in the rat blood vessel organ culture assay, AGM-1470 (1-1,000 ng/ml) was found to selectively inhibit the capillary-like tube formation of endothelial cells with a minimal effect on the non-endothelial cell growth. AGM-1470 showed more potent anti-angiogenic activity and less toxicity than the fumagillin parent. Therefore, AGM-1470 is much better than the fumagillin parent as anti-angiogenic compound.  相似文献   

12.
Hybrids of 1-deoxynojirimycin (DNJ) and aryl-1,2,3-triazole have been synthesized with a view to identifying an inhibitor of both alpha-glucosidase and methionine aminopeptidase 2 (MetAP2). One compound was a potent inhibitor of alpha-glucosidase at both the enzyme and cellular level, and this agent also inhibited bovine aortic endothelial cell (BAEC) growth and tube formation. The anti-proliferative activity of this hybrid is due to its ability to induce cell-cycle arrest in the G(1) phase. The novel agent caused a reduction in the expression of cyclin D1 but did not promote apoptosis or inhibit the phosphorylation of ERK1/2. These observations indicate that its mechanism of action is distinct from fumagillin and its analogues, which inhibit MetAP2. Stress-fibre assembly in BAECs was abolished by the novel agent indicating that the inhibition of BAEC tube formation observed is partially a result of a reduction in cell motility.  相似文献   

13.
Fumagillin is a potent anti-angiogenic drug used in cancer treatments. It is also one of the few molecules active against the Enterocytozoon and Encephalitozoon parasites responsible for various clinical syndromes in HIV-infected or immunosuppressive treated patients. Its toxicity, however, makes desirable the design of more specific molecules. The fumagillin target, as anti-angiogenic agent, is the methionine aminopeptidase, an ubiquitous metallo-enzyme responsible for the removing of the N-terminal methionine in nascent proteins. By analogy, it has been proposed that this enzyme could also be the target in the parasites. As a first approach to verify this and to determine if it would be possible to design a more specific derivative, we have built a homology model of the E. cuniculi aminopeptidase. The charges of the two cobalt ions present in the active site and of the side-chains involved in their binding were computed using ab-initio methods. A preliminary comparison of the interactions of the fumagillin and of a related compound, the TNP-470, with both the human and the parasitic enzymes strongly support the hypothesis that the parasitic aminopeptidase is indeed the target of the fumagillin. It also suggests that the TNP-470 interact identically with both enzymes while there could be small differences in case of the fumagillin.  相似文献   

14.
Fumagillin, an irreversible inhibitor of MetAP2, has been shown to potently inhibit growth of malaria parasites in vitro. Here, we demonstrate activity of fumagillin analogs with an improved pharmacokinetic profile against malaria parasites, trypanosomes, and amoebas. A subset of the compounds showed efficacy in a murine malaria model. The observed SAR forms a basis for further optimization of fumagillin based inhibitors against parasitic targets by inhibition of MetAP2.  相似文献   

15.
《Journal of Asia》2021,24(3):606-613
Nosema ceranae infection in Apis mellifera acts as a virulent pathogenic factor of honeybee colony collapse. Fumagillin is the only effective antimicrobial agent currently used against the microsporidial parasite N. ceranae. However, the toxicity of fumagillin is a concern. Therefore, in the present study, the screening of potent alternatives for fumagillin was performed for a total of 21 compounds, including 15 phenolics and 6 monoterpenes, based on their structure–activity correlation. The anti-nosemosis activity of each compound was determined by the relative inhibition level against the expression of the N. ceranae virulence factor encoding the polar tube protein 3 (ptp3) mRNA of the ptp3 gene. Each compound was preliminarily evaluated at 100 and 200 µM treatment concentrations. Then, the activity of 12 compounds showing activity at 200 µM was additionally determined at 40 µM, a concentration generally used in apiaries. At this concentration, gallol (benzene-1,2,3-triol) and 3-pentylcatechol (PC) showed higher activities than fumagillin, and 4-pentylgallol (PG) exhibited activity at a similar level to fumagillin. All three compounds selected in this study were low-molecular-weight phenolics. Among them, PC and PG, chemically synthesized compounds, commonly possess a hydrocarbon side chain of the pentyl group (-C5H11) in catechol and gallol, respectively. That is, the three treatment compounds were selected as potential beneficial alternatives for fumagillin and were markedly different from fumagillin in terms of their chemical structure. These results may trigger further extensive research on the biological mechanism for the prevention of nosemosis.  相似文献   

16.
Aspergillus fumigatus NRRL 2346 is the producer of fumagillin, an antitumor antibiotic that inhibits angiogenesis. This strain is very difficult to grow reproducibly in shake flasks owing to an extreme form of pellet growth and extensive wall growth. The effects of carboxymethylcellulose (CMC) and carboxypolymethylene (Carbopol) on growth and fumagillin production by A. fumigatus were investigated. By adding the polymers to the fermentation medium, the growth form of the mold was changed from a single large glob to small reproducible pellets, and wall growth was diminished to a minimum. Carbopol, at a lower concentration, was more effective than CMC in improving both morphology and production. Small pellets were produced which favored fumagillin biosynthesis. 1.5% (wt/vol) CMC and 0.3% (wt/vol) Carbopol were found to be the optimum concentrations; higher levels increased viscosity to an unacceptable level.  相似文献   

17.
Datta B  Majumdar A  Datta R  Balusu R 《Biochemistry》2004,43(46):14821-14831
Fumagillin, an angiogenic inhibitor, binds to methionine aminopeptidase 2, which is the same as eukaryotic initiation factor 2-associated glycoprotein, p67. p67 protects eIF2alpha from phosphorylation by its kinases. To understand the importance of fumagillin binding to p67, we measured the level of p67 in mouse C2C12 myoblasts treated with fumagillin. We show that fumagillin increases the stability of p67 by decreasing its turnover rate. The increased levels of p67 result in inhibition of phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERKs 1 and 2). p67 binds to these ERKs, and the 108-480 amino acid segment is sufficient for this binding. p67's affinity to ERKs 1 and 2 also increases in fumagillin-treated myoblasts while its affinity for eIF2alpha remains unchanged. A mutant at the conserved amino acid residue D251A increases the phosphorylation of ERKs 1 and 2 without affecting the binding to p67, thus indicating the importance of this residue in the regulation of the phosphorylation of these ERKs. These results suggest that fumagillin increases the stability of p67 and its affinity to ERKs 1 and 2 and causes the inhibition of the phosphorylation of ERKs 1 and 2.  相似文献   

18.
A high-performance liquid chromatographic assay is described as a routine analytical method for the determination of fumagillin in rainbow trout muscle tissue. Muscle tissue samples (1 g) containing fumagillin were deproteinized with 8 ml of an acetonitrile-water mixture (2:6, v/v). The extracts were purified with a Bond Elut Octyl C8 cartridge column, washed with a water-methanol mixture (95:5, v/v; 4 ml) and fumagillin was eluted with acetonitrile (1 ml). Analytical separations were performed by reversed-phase HPLC with UV detection at 351 nm under gradient conditions. The mobile phase was acetonitrile-0.005 M tetrabutyl ammonium phosphate in water (pH 7.8). The assay is specific and reproducible within the fumagillin range of 20–1000 ng/g and recovery at 20 ng/g was 69.2%. Sample preparation involves the use of a robotic sample preparation system. Gravimetric validation of all operations enabled Good Laboratory Practices to be observed.  相似文献   

19.
Fibroblast growth factor-1 (FGF1), a prototypic member of the FGF family, is a potent angiogenic factor. Although FGF-stimulated angiogenesis has been extensively studied, the molecular mechanisms regulating FGF1-induced angiogenesis are poorly understood in vivo. Fumagillin, an antiangiogenic fungal metabolite, has the ability to inhibit FGF-stimulated angiogenesis in the chicken chorioallantoic membrane (CAM). In the current study, chicken CAMs were transfected with a signal peptide-containing version of the FGF1 gene construct (sp-FGF1). Transfected CAMs were then analyzed in the presence and absence of fumagillin treatment with respect to the mRNA expression levels and protein activity of the FGF1 receptor protein (FGFR1), phosphatidylinositol 3-kinase (PI3K), and its immediate downstream target, AKT-1 (protein kinase B). Treatment of sp-FGF1-transfected CAMs with fumagillin showed downregulation for both PI3K and AKT-1 proteins in mRNA expression and protein activity. In contrast, no major alterations in FGFR1 mRNA expression level were observed. Similar patterns of mRNA expression for the above three proteins were observed when the CAMs were treated with recombinant FGF1 protein in place of sp-FGF1 gene transfection. Investigation using biotin-labeled fumagillin showed that only the FGF1 receptor protein containing the cytoplasmic domain demonstrated binding to fumagillin. Furthermore, we demonstrated endothelial-specificity of the proposed antiangiogenic signaling cascade using an in vitro system. Based on these findings, we conclude that the binding of fumagillin to the cytoplasmic domain of the FGF1 receptor inhibited FGF1-stimulated angiogenesis both in vitro and in vivo.  相似文献   

20.
Methionine aminopeptidases (MetAPs) remove the initiator methionine during protein biosynthesis. They exist in two isoforms, MetAP1 and MetAP2. The anti-angiogenic compound fumagillin binds tightly to the Type 2 MetAPs but only weakly to Type 1. High-affinity complexes of fumagillin and its relative ovalicin with Type 2 human MetAP have been reported. Here we describe the crystallographic structure of the low-affinity complex between ovalicin and Type 1 human MetAP at 1.1 A resolution. This provides the first opportunity to compare the structures of ovalicin or fumagillin bound to a Type 1 and a Type 2 MetAP. For both Type 1 and Type 2 human MetAPs the inhibitor makes a covalent adduct with a corresponding histidine. At the same time there are significant differences in the alignment of the inhibitors within the respective active sites. It has been argued that the lower affinity of ovalicin and fumagillin for the Type 1 MetAPs is due to the smaller size of their active sites relative to the Type 2 enzymes. Comparison with the uncomplexed structure of human Type 1 MetAP indicates that there is some truth to this. Several active site residues have to move "outward" by 0.5 Angstroms or so to accommodate the inhibitor. Other residues move "inward." There are, however, other factors that come into play. In particular, the side chain of His310 rotates by 134 degrees into a different position where (together with Glu128 and Tyr195) it coordinates a metal ion not seen at this site in the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号