共查询到20条相似文献,搜索用时 15 毫秒
1.
A membrane-associated NADH dehydrogenase from beef neutrophils was purified to homogeneity, using detergent (cholate plus Triton X-100) extraction and chromatography on DEAE-Sepharose CL-6B, agarose-hexane-NAD, and hydroxylapatite. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an apparent subunit molecular weight of 17,500, but the enzyme was highly aggregated (Mr greater than 450,000) in nondenaturing gels containing 0.1% Triton X-100. The protein band in nondenaturing gels was also stained for activity using NADH and nitro blue tetrazolium. The enzyme showed greatest electron acceptor activity with ferricyanide (100%), followed by cytochrome c (3.5%), dichloroindophenol (2.7%), and cytochrome b5 (0.34%). No activity was seen with oxygen. The Km values for NADH and ferricyanide were 18 and 9.5 microM, respectively, and NAD+ was a weak competitive inhibitor (Ki = 118 microM). No activity was seen with NADPH. No effects were seen with mitochondrial respiratory inhibitors such as azide, cyanide, or rotenone, but p-chloromercuribenzoate was strongly inhibitory and N-ethylmaleimide was weakly inhibitory. No free flavin was detectable in enzyme preparations. Based upon kinetic, physical, and inhibition properties, this NADH dehydrogenase differs from those previously described in microsomes and erythrocyte plasma membrane. 相似文献
2.
L Hermans 《Biochimica et biophysica acta》1979,567(1):125-134
Mitochondrial NADH dehydrogenase (NADH:(acceptor) oxidoreductase, EC .6.99.3) from either Drosophila hydei larvae or embryos has been purified 150- and 120-fold, respectively. The purified enzyme appeared homogeneous and showed a molecular weight of 57 000. The molecular weight of the nondenatured enzyme was 79 000. On isoelectro-focussing of the preparation, two fractions were observed, a major one with an isoelectric point of 6.2 and a minor fraction with an isoelectric point of 4.9. Straight-line kinetics in Lineweaver-Burk plots were observed for the purified enzyme with a Km of 0.040 mM. The Km was not changed during the purification procedure, suggesting that the enzyme was not denatured or inactivated. The pH optimum of the purified enzyme was 5.6. The molecular weight of the purified mitochondrial NADH dehydrogenase does not correspond to that of one of the 'heat-shock' polypeptides. 相似文献
3.
4.
J D Shore S A Evans J J Holbrook D M Parker 《The Journal of biological chemistry》1979,254(18):9059-9062
The binding of NADH to porcine mitochondrial malate dehydrogenase in phosphate buffer at pH 7.5 has been studied by equilibrium and kinetic methods. Hyperbolic binding was obtained by fluorimetric titration of enzyme with NADH, in the presence or absence of hydroxymalonate. Identical results were obtained for titrations of NADH with enzyme in the presence or absence of hydroxymalonate, measured either by fluorescence emission intensity or by the product of intensity and anisotropy. The equilibrium constant for NADH dissociation was 3.8 +/- 0.2 micrometers, over a 23-fold range of enzyme concentration, and the value in the presence of saturating hydroxymalonate was 0.33 +/- 0.02 micrometer over a 10-fold range of enzyme concentration. The rate constant for NADH binding to the enzyme in the presence of hydroxymalonate was 3.6 X 10(7) M-1 s-1, while the value for dissociation from the ternary complex was 30 +/- 1 s-1. No limiting binding rate was obtained at pseudo-first order rate constants as high as 200 s-1, and the rate curve for dissociation was a single exponential for at least 98% of the amplitude. In addition to demonstrating that the binding sites are independent and indistinguishable, the absence of effects of enzyme concentration on the KD value indicates that NADH binds with equal affinity to monomeric and dimeric enzyme forms. 相似文献
5.
6.
7.
Kazunobu Matsushita Asuka Otofuji Midori Iwahashi Hirohide Toyama Osao Adachi 《FEMS microbiology letters》2001,204(2):271-276
NADPH oxidase activity, in addition to NADH oxidase activity, has been shown to be present in the respiratory chain of Corynebacterium glutamicum. In this study, we tried to purify NADPH oxidase and NADH dehydrogenase activities from the membranes of C. glutamicum. Both the enzyme activities were simultaneously purified in the same fraction, and the purified enzyme was shown to be a single polypeptide of 55 kDa. The N-terminal sequence of the enzyme was consistent with the sequence deduced from the NADH dehydrogenase gene of C. glutamicum, which has been sequenced and shown to be a homolog of NADH dehydrogenase II. In addition to high NADH-ubiquinone-1 oxidoreductase activity at neutral pH, the purified enzyme showed relatively high NADPH oxidase and NADPH-ubiquinone-1 oxidoreductase activities at acidic pH. Thus, NADH dehydrogenase of C. glutamicum was shown to be rather unique in having a relatively high reactivity toward NADPH. 相似文献
8.
9.
Purification and properties of the bovine liver mitochondrial dihydroorotate dehydrogenase 总被引:3,自引:0,他引:3
Dihydroorotate dehydrogenase has been purified 6,000-fold from bovine liver mitochondria to apparent homogeneity in six steps. Electrophoretic migration of the homogeneous enzyme on sodium dodecyl sulfate-polyacrylamide gels reveals a subunit Mr of 42,000. By contrast to the well-characterized, cytosolic dihydroorotate oxidases (EC 1.3.3.1), the purified bovine dehydrogenase is a dihydroorotate:ubiquinone oxidoreductase. Maximal rates of orotate formation are obtained using coenzymes Q6 or Q7 as cosubstrate electron acceptors. Concomitant with substrate oxidation, the enzyme will reduce simple quinones, such as benzoquinone, but at significantly lower rates (10-15%) than that obtained for reduction of coenzyme Q6. Enzyme-catalyzed substrate oxidation is not supported by molecular oxygen. The specificity of the purified enzyme for dihydropyrimidine substrates has also been explored. The methyl-, ethyl-, t-butyl-, and benzyl-S-dihydroorotates are substrates, but 1- and 3-methyl and 1,3-dimethyl methyl-S-dihydroorotates are not. Competitive inhibitors include product orotate, 5-methyl orotate, and racemic cis-5-methyl dihydroorotate. 相似文献
10.
Interaction of rhodanese with mitochondrial NADH dehydrogenase 总被引:2,自引:0,他引:2
NADH dehydrogenase is an iron-sulfur flavoprotein which is isolated and purified from Complex I (mitochondrial NADH: ubiquinone oxidoreductase) by resolution with NaClO4. The activity of the enzyme (followed as NADH: 2-methylnaphthoquinone oxidoreductase) increases linearly with protein concentration (in the range between 0.2 and 1.0 mg/ml) and decreases with aging upon incubation on ice. In the present work a good correlation was found between enzymic activity and labile sulfide content, at least within the limits of sensitivity of the assays employed. Rhodanese (thiosulfate: cyanide sulfurtransferase (EC 2.8.1.1) purified from bovine liver mitochondria was shown to restore, in the presence of thiosulfate, the activity of the partly inactivated NADH dehydrogenase. Concomitantly, sulfur was transferred from thiosulfate to the flavoprotein and incorporated as acid-labile sulfide. Rhodanese-mediated sulfide transfer was directly demonstrated when the reactivation of NADH dehydrogenase was performed in the presence of radioactive thiosulfate (labeled in the outer sulfur) and the 35S-loaded flavoprotein was re-isolated by gel filtration chromatography. The results indicated that the [35S]sulfide was inserted in NADH dehydrogenase and appeared to constitute the structural basis for the increase in enzymic activity. 相似文献
11.
Alcohol dehydrogenase isozymes from mouse liver (A2 and B2) and stomach (C2) tissues have been purified to homogeneity using triazine-dye affinity chromatography. The enzymes are dimers with similar but distinct subunit sizes, as determined by SDS/polyacrylamide gel electrophoresis: A, 43000; B, 39000, and C, 47000. Zinc analyses and 1,10-phenanthroline inhibition studies indicated that the A and C subunits each contained two atoms of zinc, with at least one being involved catalytically, whereas the B subunit probably contained a single non-catalytic zinc atom. The isozymes exhibited widely divergent kinetic characteristics. A2 exhibited a Km value for ethanol of 0.15 mM and a broad substrate specificity, with Km values decreasing dramatically with an increase in chain length; C2 also exhibited this broad specificity for alcohols but showed a Km value of 232 mM for ethanol. These isozymes also showed broad substrate specificities as aldehyde reductases. In contrast, B2 showed no detectable activity as an aldehyde reductase for the aldehydes examined, and used ethanol as substrate only at very high concentrations (greater than 0.5 M). The isozyme exhibited low Km and high Vmax values, however, with medium-chain alcohols. Immunological studies showed that A2 was immunologically distinct from the B2 and C2 isozymes. In vitro molecular hybridization studies gave no evidence for association between the alcohol dehydrogenase subunits. The results confirm genetic analyses [Holmes, Albanese, Whitehead and Duley (1981) J. Exp. Zool. 215, 151-157] which are consistent with at least three structural genes encoding alcohol dehydrogenase in the mouse and confirm the role of the major liver isozyme (A2) in ethanol metabolism. 相似文献
12.
Purification and properties of NADH dehydrogenase from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius 总被引:3,自引:0,他引:3
An NADH dehydrogenase was purified to electrophoretical homogeneity from Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium optimally growing at pH 2-3 and 75 degrees C. A 2,100-fold purification was achieved. The purified enzyme is an acidic protein with an isoelectric point of 5.6 and a molecular weight of 95,000, consisting of two 50,000-dalton subunits. The enzyme showed an absorption spectrum characteristic of flavoproteins, with maxima at 272, 372, and 448 nm. The enzyme is highly thermostable, is specific for NADH as an electron donor, and is capable of using 2,6-dichlorophenolindophenol, ferricyanide, benzoquinone, and naphthoquinone as electron acceptors. Though at a low rate, caldariellaquinone, a unique and sole benzothiophenequinone in the genus Sulfolobus, was also reduced by the enzyme, suggesting that the enzyme is a possible member of the respiratory chain of the thermoacidophilic archaebacterium. 相似文献
13.
Chemical cross-linking of mitochondrial NADH dehydrogenase from bovine heart. 总被引:2,自引:3,他引:2 下载免费PDF全文
The structure of bovine heart mitochondrial NADH dehydrogenase was investigated by using two cleavable cross-linking agents, disuccinimidyl tartrate and (ethylene glycol)yl bis-(succinimidyl succinate). Cross-linking was analysed primarily by immunoblotting to detect products containing subunits of the iron-protein fraction from chaotropic resolution of the enzyme, namely those of 75, 49, 30 and 13 kDa. By using both the isolated iron-protein fraction and the intact dehydrogenase, cross-links were identified between these four subunits, from these subunits to the largest subunit of the flavoprotein fraction, which contains the active site for NADH, and from these subunits to polypeptides in the hydrophobic shell, which surrounds the hydrophilic iron-protein and flavoprotein fractions. 相似文献
14.
E Mansini E G Oestreicher L P Ribeiro 《Comparative biochemistry and physiology. B, Comparative biochemistry》1986,85(1):223-228
Mitochondrial malate dehydrogenase was purified from muscle extracts of Toxocara canis by means of Sephadex G-100 gel filtration, DEAE-Sephadex ion-exchange chromatography and 5'AMP-Sepharose 4B affinity chromatography. The purified enzyme showed an optimum pH for the reduction of oxaloacetate of 7.3 in Tris-HCl buffer and of pH 7.5-7.8 in phosphate buffer. The m-MDH showed values of 3.2 kcal/mol and 10.5 kcal/mol for the energy of activation, calculated from the Arrhenius equation. The mitochondrial enzyme was found to be more susceptible to thermal inactivation as compared with the cytosolic isoenzyme. Kinetic experiments showed that the m-MDH of Toxocara canis is inhibited by excess oxaloacetate but not by excess NADH. The apparent Km for oxaloacetate reduction was 53 microM and 0.54 mM for L-malate oxidation. 相似文献
15.
16.
17.
NADH dehydrogenase from Bacillus subtilis W23 has been isolated from membrane vesicles solubilized with 0.1% Triton X-100 by hydrophobic interaction chromatography on an octyl-Sepharose CL-4B column. A 70-fold purification is achieved. No other components could be detected with sodium dodecyl sulphate polyacrylamide gel electrophoresis. Ferguson plots of the purified protein indicated no anomalous binding of sodium dodecyl sulphate and an accurate molecular weight of 63 000 could be determined. From the amino acid composition a polarity of 43.8% was calculated indicating that the protein is not very hydrophobic. Optical absorption spectra and acid extraction of the enzyme chromophore followed by thin-layer chromatography showed that the enzyme contains 1 molecule FAD/molecule. The enzyme was found to be specific for NADH. NADPH is oxidized at a rate which is less than 6% of the rate of NADH oxidation. The activity of the enzyme as determined by NADH:3-(4'-5'-dimethyl-thiazol-2-yl)2,4-diphenyltetrazolium bromide oxidoreduction is optimal at 37 C and pH 7.5-8.0. The purified enzyme has a Kapp for NADH of 60 microM and a V of 23.5 mumol NADH/min X mg protein. These parameters are not influenced by phospholipids. The enzyme activity is hardly or not at all affected by NADH-related compounds such as ATP, ADP, AMP, adenosine, deoxyadenosine, adenine and nicotinic amide indicating the high binding specificity of the enzyme for NADH. 相似文献
18.
Aldehyde dehydrogenase isozymes (AHD-1 and AHD-5) have been isolated in a highly purified state from extracts of mouse liver mitochondria. The enzymes have distinct subunit sizes, as determined by SDS/polyacrylamide gel electrophoresis: AHD-1, 63,000; AHD-5, 49,000. Gel exclusion chromatography, using sephadex G-200, indicated that both isozymes are dimers, although AHD-1 may also exist as a monomeric form as well. The enzymes exhibited widely divergent kinetic characteristics. The purified allelic forms of AHD-1, AHD-1A (C57BL/6J mice) and AHD-1B (CBA/H mice), exhibited high Km values with acetaldehyde as substrate, 1.4 mM and 0.78 mM respectively, whereas AHD-5 exhibited a low Km value with acetaldehyde of 0.2 microM. In addition, the isozymes exhibited distinct pH optima for catalysis (AHD-1, pH range 6.5-7.5; AHD-5, pH range 8.5-10.0), and were differentially sensitive towards disulphuram inhibition, with 50% inhibition occurring 13 and 0.1 microM for the AHD-1 and AHD-5 isozyme respectively. Based upon the kinetic characteristics, it is suggested that AHD-5 may be the primary enzyme for oxidizing mitochondrial acetaldehyde during ethanol oxidation in vivo. 相似文献
19.
20.
Purification and molecular properties of malate dehydrogenase from the marine diatom Nitzschia alba. 下载免费PDF全文
Malate dehydrogenase (EC 1.1.1.37) was purified to homogeneity from the marine diatom Nitzschia alba. The purification steps consisted of (NH4)2SO4 precipitation, ion-exchange chromatography, Blue Sepharose affinity chromatography and gel filtration. A typical procedure provided 685-fold purification with 58% yield. The Mr of the holoenzyme was estimated to be 322,000 by gel filtration and 316,000 by ultracentrifugation. The enzyme migrated as a single polypeptide spot on two-dimensional polyacrylamide-gel electrophoresis with an Mr of 38,500, suggesting that the holoenzyme consists of eight identical subunits. This is the first case where malate dehydrogenase has been shown to be a homo-octamer; malate dehydrogenases from other sources are predominantly homodimers, with two homotetramers reported so far. The amino acid composition of the enzyme was determined and the N-terminal sequence of the subunit polypeptide was found to be Arg-Lys-Val-Ala-Val-Met-Gly-Ala-Ala-Gly-Gly-Ile-Gly-Gln-Pro-Leu-Ser-Leu- Leu-Leu - Lys-Leu-Ser-Pro-Gln-Val-Thr-Glu-Leu-Ser-Lys-Tyr-. For the first 21 amino acid residues, near-identical sequences were reported for the enzymes isolated from pig heart, Escherichia coli, yeast and watermelon. Other physicochemical and catalytic properties, such as sedimentation coefficient, partial specific volume, Stokes radius, excitation and emission maxima, Michaelis constants, pH optima, pH stability range and activation energy, of this enzyme are also presented. 相似文献