共查询到19条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
石莼多糖(Ulvan)由3-硫酸化鼠李糖,葡糖醛酸,艾杜糖醛酸及一些随机分布的木糖组成。石莼多糖及其降解得到的寡糖在医疗、食品等领域具有广泛的应用前景。为促进对石莼多糖裂解酶这一石莼多糖利用工具的开发,对石莼多糖裂解酶的底物组成,来源分类,序列及进化关系,酶学性质及作用模式,蛋白结构以及作用机制进行了综述,以求对后续石莼多糖裂解酶研究者提供帮助。 相似文献
8.
9.
10.
海藻主要由蓝藻、绿藻、红藻和褐藻四大类组成。世界海洋中估计生长有 80 0 0多种海藻。海藻的生产与它的利用价值有密切关系 ,就褐藻、红藻和绿藻这三大门类来说 ,褐藻和红藻以其种类多、产量丰富和含有用途广泛的褐藻胶、琼胶和卡拉胶等 ,由自然生产逐步为人工养殖所代替。全世界每年约生产5万吨海藻胶 (其中 ,褐藻胶 2 5万吨 ,卡拉胶 1 45万吨、琼胶 0 7万吨 )创值近 4亿美元。这些海藻胶是海藻细胞壁内的主要填充物质 ,约占细胞干重的 2 0 %~ 3 0 % [1] 。近年来 ,各国的科学家大力开展从海洋开发新药物的研究计划。因此 ,对海藻、… 相似文献
11.
Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp. 510 总被引:7,自引:0,他引:7
Alginate that was purified from the fermentation solution of marine bacteria Vibro sp. 510 under specific reaction conditions was hydrolyzed by alginate lyase. Seven oligosaccharides, including di-, tri- and tetrasaccharides, were isolated through low-pressure, gel-permeation chromatography (LP-GPC) and semipreparative strong-anion exchange (SAX) fast-protein liquid chromatography (FPLC). The oligosaccharide structures were elucidated based on ESIMS and 2D NMR spectral analysis. The hydrolytic specificity of this alginate lyase to alginate is discussed. 相似文献
12.
Characterization of the alginates from algae harvested at the Egyptian Red Sea coast 总被引:1,自引:0,他引:1
The alginates from five species of brown algae from the Egyptian Red Sea coast, namely: Cystoseira trinode, Cystoseira myrica, Sargassum dentifolium, Sargassum asperifolium, and Sargassum latifolium, were isolated and their compositions and structures studied by 1H NMR spectroscopy. All the alginates studied contain more guluronic acid (G) than mannuronic acid (M) and have a homopolymeric block-type structure (eta<1). The intrinsic viscosity of the alginate samples range from 8.6 to 15.2 and the gel strength ranges from 10.97 to 15.51. The constitutional G- and M-blocks of alginates from two different species (C. trinode and S. latifolium) were separated after partial acid hydrolysis. The 1H NMR spectral data of the blocks GG and MM obtained by chemical fractionation were compared with those of polymeric alginates. The monomeric uronic acids were separated by complete acid hydrolysis of S. asperifolium alginate and the G and M monomers were characterized by 1H, 13C NMR spectroscopy as well as by paper electrophoresis. 相似文献
13.
James F. Preston III Tony Romeo John C. Bromley 《Journal of industrial microbiology & biotechnology》1986,1(4):235-244
Summary Alginase-secreting bacteria associated with actively growing tissues of the marine Phaeophyta speciesSargassum fluitans andS. natans have been isolated and evaluated for their ability to degrade alginate (ALG), carboxymethylcellulose, and agar. Of seven isolates selected for their ability to grow on 2% agar containing 1% sodium alginate, none were able to grow on either 2% agar or 2% agar supplemented with 0.1% carboxymethylcellulose. Two of these with fermentative potential, i.e., ALG-A and ALG-G, showed selective activities with respect to their ability to degrade native alginate and/or take up the products resulting from alginate degradation. The ALG-A isolate was able to rapidly degrade native alginate with the generation of a stable polymer fraction and small oligouronides, most of which were dissimilated for growth. The ALG-G isolate was able to completely degrade native alginate with the accumulation of significant quantities of unsaturated dimeric and trimeric oligouronides. A limit polymer was generated from the action of a polymannuronan-specific extracellular alginate lyase purified from exponential cultures of the ALG-A organism. This product proved to be an effective substrate for the alginate lyase activity obtained from the medium of exponential phase cultures of the ALG-G isolate, and upon incubation with concentrated and dialyzed ALG-G medium was converted to the products that were observed to accumulate in the medium of the ALG-G isolate grown on native alginate. These organisms represent examples of the microflora associated with actively growingSargassum tissues, each with a selective ability to degrade and dissimilate the biomass of the marine brown algae. 相似文献
14.
Alginate lyase which was purified from the fermentation solution of marine bacteria Pseudomonas sp. HJZ216 was applied to hydrolyze algae alginate. Six oligosaccharides, including di- and trisaccharides, were isolated and purified through anion exchange chromatography. The oligosaccharide structures were elucidated based on electrospray ionization-mass spectrometry (ESI-MS) and 2D NMR spectra analysis. 相似文献
15.
Masayuki Yamasaki Satoko Moriwaki Wataru Hashimoto Bunzo Mikami Kousaku Murata 《Acta Crystallographica. Section D, Structural Biology》2003,59(8):1499-1501
Alginate lyase depolymerizes alginate, a heteropolysaccharide consisting of α‐l ‐guluronate and β‐d ‐mannuronate, through a β‐elimination reaction. A protein PA1167 with a molecular mass of 25 kDa produced by Pseudomonas aeruginosa is an alginate lyase classified into polysaccharide lyase family PL‐7. The enzyme was crystallized at 293 K in a drop solution comprising 1.4 M sodium chloride, 0.1 M potassium sodium phosphate and 0.1 M 2‐morpholinoethanesulfonate–sodium hydroxide pH 6.5 by means of the vapor‐diffusion method. The crystals were monoclinic and belonged to space group P21, with unit‐cell parameters a = 43.4, b = 70.3, c = 67.4 Å, β = 94.5°. Diffraction data were collected to 2.0 Å from a single crystal. 相似文献
16.
Bernd H.A Rehma 《FEMS microbiology letters》1998,165(1):175-180
In order to investigate the catalytic properties of alginate lyase from Pseudomonas aeruginosa CF1/M1, a clinical isolate, regarding the capability to perform β-elimination on oligomannuronates of defined length (2–9), the alginate lyase was purified from periplasmic extracts. A purification method for unsaturated and saturated oligomannuronates applying anionic exchange chromatography on a FPLC apparatus was established. The alginate lyase showed the highest activity, when hexamers were provided as substrate. This indicated that the alginate lyase best accommodates a chain of six alginate residues in the active center. As a minimum chain length, the pentameric oligomannuronate was still accepted as substrate. Mannuronate oligomers shorter than the pentamer were not accepted as substrate for alginate lyase. Furthermore, oligomer pattern analysis of polymannuronate which was subjected to β-elimination by alginate lyase revealed that the trimer is the most abundant oligomer. These data indicated that β-elimination and cleavage occurred at mannuronic acid residue no. 3 of the accommodated hexameric alginate chain. 相似文献
17.
作为第三代生物燃料,大型褐藻类生物质转化燃料乙醇的研究受到广泛的关注。但是,现有的乙醇工业菌株并不能利用褐藻中的主要成分海藻酸,这个问题是海藻生物乙醇实现工业化生产的主要技术难关。近几年随着对海藻酸裂解酶和海藻酸降解菌代谢途径的深入研究,科研人员构建了不同的海藻酸发酵菌株,为高效转化大型海藻生产生物乙醇提供了可行的技术基础。这篇文章对海藻酸资源概况和海藻酸转化生物乙醇存在的科学问题及其研究进展进行了综述。 相似文献
18.
Kouji Sudaa Yasunori Tanjia Katsutoshi Horia Hajime Unnoa 《FEMS microbiology letters》1999,180(1):45-53
To clone the genes encoding lysis protein from a Chlorella virus, water samples were collected from 13 aquatic environments located in the Kanto area of Japan. Eight water samples contained plaque-forming viruses on Chlorella sp. NC64A, but no virus was detected in the other five samples. A novel Chlorella virus, CVN1, was isolated from the Inba-numa marsh sample. CVN1 genomic DNA was partially digested and shotgun cloned into pUC118 to identify the genomic region responsible for the lytic phenotype on Chlorella sp. NC64A. A DNA fragment which encoded two ORFs, ORF1 and ORF2, was obtained by antialgal assay. The ORF2 gene product, CL2, consisted of 333 amino acids showing antialgal activity not only on the original host of Chlorella sp. NC64A, but also on the heterogeneous hosts of Chlorella vulgaris C-27 and C. vulgaris C-207. CL2 showed a weak homology (19.8% amino acid identity) to mannuronate lyase SP2 from Turbo cornutus. CL2 in Escherichia coli cells was purified using a nickel chelate column. Lyase activity of purified CL2 on alginic acid was observed in an enzyme assay. The specific activity of purified CL2 was 2.1x10(-2) U mg(-1), the optimum pH for enzymatic activity was 10.5, and Ca(2+) was required for enzyme activity. This is the first report of a Chlorella virus protein with lyase activity. 相似文献
19.
The Surface Display of the Alginate Lyase on the Cells of Yarrowia lipolytica for Hydrolysis of Alginate 总被引:1,自引:0,他引:1
Guanglei Liu Lixi Yue Zhe Chi Wengong Yu Zhenming Chi Catherine Madzak 《Marine biotechnology (New York, N.Y.)》2009,11(5):619-626
The alginate lyase structural gene (AlyVI gene) was amplified from plasmid pET24-ALYVI carrying the alginate lyase gene from the marine bacterium Vibrio sp. QY101 which is a pathogen of Laminaria sp. When the gene was cloned into the multiple cloning site of the surface display vector pINA1317-YlCWP110 and expressed
in cells of Yarrowia lipolytica, the cells displaying the alginate lyase could form clear zone on the plate containing sodium alginate, indicating that they
had high alginate lyase activity. The cells displaying alginate lyase can be used to hydrolyze poly-β-d-mannuronate (M) and poly-α-l-guluronate (G) and sodium alginate to produce different lengths of oligosaccharides (more than pentasaccharides). This is
the first report that the yeast cells displaying alginate lyase were used to produce different lengths of oligosaccharides
from alginate. 相似文献