首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With this effort, we continue our examination of data on selected pesticide chemicals and their related analogues that have been presented to the U.S. Environmental Protection Agency's (USEPA's) Office of Pesticide Programs (OPP). This report focuses on a group of selected chloroacetanilides and a few related compounds. As part of the registration process for pesticidal chemicals, interested parties (registrants) must submit toxicity information to support the registration including both mutagenicity and carcinogenicity data. Although this information is available to the public via Freedom of Information (FOI) requests to the OPP, publication in the scientific literature allows greater dissemination and examination of the data. For this Special Issue, graphic profiles have been prepared of the mutagenicity and carcinogenicity data available in the submissions to OPP. Also, a discussion is presented about how toxicity data are used to help establish tolerances (limits of pesticide residues in foods). The mutagenicity results submitted by registrants are supplemented by data on these chemicals from the open literature to provide a full perspective of their genetic toxicology. The group of chloroacetanilides reviewed here display a consistent pattern of mutagenic activity, probably mediated via metabolites. This mutagenic activity is a mechanistically plausible factor in the development of tumors seen in experimental animals exposed to this class of chemicals.  相似文献   

2.
The Salmonella assay has been in use for almost 15 years and can be defined as a routine test for mutagenicity and for predicting potential carcinogenicity. It detects the majority of animal carcinogens and consequently plays an important role in safety assessment. The test is also routinely used as the frontline screen for environmental samples (complex mixtures) isolated from air, water and food. This role will continue to remain an area of growth as or because sample volumes associated with these testing areas are generally very limited and more extensive testing is generally impossible. While this test, like all others, has some limitations, it is recommended that it be regularly included in all genetic testing batteries.  相似文献   

3.
4.
Recent advances in genetic toxicity (mutagenicity) testing methods and in approaches to performing risk assessment are prompting a renewed effort to harmonize genotoxicity risk assessment across the world. The US Environmental Protection Agency (EPA) first published Guidelines for Mutagenicity Risk Assessment in 1986 that focused mainly on transmissible germ cell genetic risk. Somatic cell genetic risk has also been a risk consideration, usually in support of carcinogenicity assessments. EPA and other international regulatory bodies have published mutagenicity testing requirements for agents (pesticides, pharmaceuticals, etc.) to generate data for use in genotoxicity risk assessments. The scheme that follows provides a proposed harmonization approach in which genotoxicity assessments are fully developed within the risk assessment paradigm used by EPA, and sets out a process that integrates newer thinking in testing battery design with the risk assessment process. A classification strategy for agents based on inherent genotoxicity, dose-responses observed in the data, and an exposure analysis is proposed. The classification leads to an initial level of concern for genotoxic risk to humans. A total risk characterization is performed using all relevant toxicity data and a comprehensive exposure evaluation in association with the genotoxicity data. The result of this characterization is ultimately used to generate a final level of concern for genotoxic risk to humans. The final level of concern and characterized genotoxicity risk assessment are communicated to decision makers for possible regulatory action(s) and to the public.  相似文献   

5.
Genotoxicity risk assessment: a proposed classification strategy   总被引:5,自引:0,他引:5  
Recent advances in genetic toxicity (mutagenicity) testing methods and in approaches to performing risk assessment are prompting a renewed effort to harmonize genotoxicity risk assessment across the world. The US Environmental Protection Agency (EPA) first published Guidelines for Mutagenicity Risk Assessment in 1986 that focused mainly on transmissible germ cell genetic risk. Somatic cell genetic risk has also been a risk consideration, usually in support of carcinogenicity assessments. EPA and other international regulatory bodies have published mutagenicity testing requirements for agents (pesticides, pharmaceuticals, etc.) to generate data for use in genotoxicity risk assessments. The scheme that follows provides a proposed harmonization approach in which genotoxicity assessments are fully developed within the risk assessment paradigm used by EPA, and sets out a process that integrates newer thinking in testing battery design with the risk assessment process. A classification strategy for agents based on inherent genotoxicity, dose-responses observed in the data, and an exposure analysis is proposed. The classification leads to an initial level of concern for genotoxic risk to humans. A total risk characterization is performed using all relevant toxicity data and a comprehensive exposure evaluation in association with the genotoxicity data. The result of this characterization is ultimately used to generate a final level of concern for genotoxic risk to humans. The final level of concern and characterized genotoxicity risk assessment are communicated to decision makers for possible regulatory action(s) and to the public.  相似文献   

6.
An automated approach to bacterial mutagenicity testing - the spiral Salmonella assay - was developed to simplify testing and to reduce the labor and materials required to generate dose-responsive mutagenicity information. This document provides the reader with an overview of the spiral assay and a discussion of its application for examining the mutagenic potential of pure compounds, complex environmental mixtures, and interactive effects. Guidelines for performing a routine spiral assay are presented, and alternative test methods intended to overcome a variety of technical difficulties (such as restricted sample availability, sample viscosity or volatility, etc.) are recommended. Methods for the computerized analysis of data and the interpretation of results are discussed.  相似文献   

7.
《Endocrine practice》2023,29(5):341-348
ObjectiveThis 2023 updated protocol summarizes the American Association of Clinical Endocrinology’s (AACE’s) new framework for the development of clinical practice guidelines and other guidance documents that includes changes to methodology, processes, and policies.MethodsAACE has critically reviewed its development processes for guidance documents over the last several years against the National Academy of Medicine Standards for Developing Trustworthy Clinical Practice Guidelines and the Council of Medical Specialty Societies Principles for Development of Specialty Society Clinical Guidelines to determine areas for improvement.ResultsThe new AACE framework for development of guidance documents incorporates many changes, including a revised conflicts of interest (COI) policy; strengthened commitment to collection of disclosures and management of relevant COI during development; open calls to membership for authors; new requirements for authors; new diversity, equity, and inclusion (DEI) policy; new empanelment process that incorporates consideration of DEI; and adoption of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to increase the quality of evidence assessment and standardize recommendation grades and statements, among other improvements.ConclusionsAACE has revised its policies and adopted a completely new methodology for guideline development in support of the mission to elevate the practice of clinical endocrinology to improve patient care. With the use of an evidence-based medicine framework and by continually assessing and improving its processes for development of guidance, AACE strives to deliver trustworthy, unbiased, and up-to-date information that ensures clinician and patient confidence in AACE content. Further, AACE hopes that these enhancements foster a more collaborative approach to development and increase engagement with the worldwide medical community to improve global health.  相似文献   

8.
The 2001 European Commission proposal for the Registration, Evaluation and Authorisation of Chemicals (REACH) aims to improve public and environmental health by assessing the toxicity of, and restricting exposure to, potentially toxic chemicals. The greatest benefits are expected to accrue from decreased cancer incidences. Hence the accurate identification of chemical carcinogens must be a top priority for the REACH system. Due to a paucity of human clinical data, the identification of potential human carcinogens has conventionally relied on animal tests. However, our survey of the US Environmental Protection Agency's (EPAs) toxic chemicals database revealed that, for a majority of the chemicals of greatest public health concern (93/160, i.e. 58.1%), the EPA found animal carcinogenicity data to be inadequate to support classifications of probable human carcinogen or non-carcinogen. A wide variety of species were used, with rodents predominating; a wide variety of routes of administration were used; and a particularly wide variety of organ systems were affected. These factors raise serious biological obstacles that render accurate extrapolation to humans profoundly difficult. Furthermore, significantly different International Agency for Research on Cancer assessments of identical chemicals, indicate that the true human predictivity of animal carcinogenicity data is even poorer than is indicated by the EPA figures alone. Consequently, we propose the replacement of animal carcinogenicity bioassays with a tiered combination of non-animal assays, which can be expected to yield a weight-of-evidence characterisation of carcinogenic risk with superior human predictivity. Additional advantages include substantial savings of financial, human and animal resources, and potentially greater insights into mechanisms of carcinogenicity.  相似文献   

9.
At present no mammalian test system which meets the toxicological requirements is available for routine testing of mutagenicity. Therefore, emphasis should be laid primarily on basic research in this area and not on large-scale screening of possible mutagens with methods known to be inadequate in many respects, if mutagenicity is a major hazard to man, a view certainly not shared by all toxicologists.Furthermore, if carcinogenicity is based on a mutagenic event occurring in somatic cells, the well established tests for carcinogenicity would provide a better way for evaluating irreversible somatic mutations than the tests now suggested for mutagenicity testing.In the present situation a drastic reduction of the noxes men are exposed to would be the most reliable means of preventing a toxicological disaster. We are still in the situation of continuously performing “mass human experiments” and detecting hazards only after considerable harm has been done. Consequently, the goal must be neither to expose a considerable proportion of our population to environmental hazards nor to give drugs to thousands or even millions of healthy people for any reasons whatsoever, unless test systems are available which would allow effective prevention of disaster.  相似文献   

10.
Vasquez MZ 《Mutation research》2012,747(1):142-156
While the in vivo comet assay increases its role in regulatory safety testing, deliberations about the interpretation of comet data continue. Concerns can arise regarding comet assay publications with limited data from non-blind testing of positive control compounds and using protocols (e.g. dose concentrations, sample times, and tissues) known to give an expected effect. There may be a tendency towards bias when the validation or interpretation of comet assay data is based on results generated by widely accepted but non-validated assays. The greatest advantages of the comet assay are its sensitivity and its ability to detect genotoxicity in tissues and at sample times that could not previously be evaluated. Guidelines for its use and interpretation in safety testing should take these factors into account. Guidelines should be derived from objective review of data generated by blind testing of unknown compounds dosed at non-toxic concentrations and evaluated in a true safety-testing environment, where the experimental design and conclusions must be defensible. However, positive in vivo comet findings with such compounds are rarely submitted to regulatory agencies and this data is typically unavailable for publication due to its proprietary nature. To enhance the development of guidelines for safety testing with the comet assay, and with the permission of several sponsors, this paper presents and discusses relevant data from multiple GLP comet studies conducted blind, with unknown pharmaceuticals and consumer products. Based on these data and the lessons we have learned through the course of conducting these studies, I suggest significant adjustments to the current conventions, and I provide recommendations for interpreting in vivo comet assay results in situations where risk must be evaluated in the absence of carcinogenicity or clinical data.  相似文献   

11.
Transgenic mouse modelling has proved to be a powerful approach to explore the various steps involved in spontaneous and induced carcinogenesis. Some of the multitude of models currently available have the potential to become a substitute for the expensive, long-term rodent bioassay to predict carcinogenicity of environmental compounds. Here, we review the progress in the development and use of transgenic mouse models specifically for the purpose of carcinogenicity and mutagenicity testing.  相似文献   

12.
Strategies and testing methods for identifying mutagenic risks   总被引:4,自引:0,他引:4  
The evolution of testing strategies and methods for identification of mutagenic agents is discussed, beginning with the concern over potential health and population effects of chemical mutagens in the late 1940s that led to the development of regulatory guidelines for mutagenicity testing in the 1970s and 1980s. Efforts to achieve international harmonization of mutagenicity testing guidelines are summarized, and current issues and needs in the field are discussed, including the need for quantitative methods of mutagenic risk assessment, dose-response thresholds, indirect mechanisms of mutagenicity, and the predictivity of mutagenicity assays for carcinogenicity in vivo. Speculation is offered about the future of mutagenicity testing, including possible near-term changes in standard test batteries and the longer-term roles of expression profiling of damage-response genes, in vivo mutagenicity testing methods, and models that better account for differences in metabolism between humans and laboratory model systems.  相似文献   

13.
The relationship between allergic contact dermatitis (ACD) and carcinogenicity was investigated using a recently developed and validated simulation approach. The analyses indicated that while there are electrophilic and non-electrophilic components to ACD, these were not identical to those operating in carcinogenicity. Accordingly, with respect to carcinogenicity prediction, the results of ACD do not improve the results based upon mutagenicity testing alone, the latter being a surrogate for potential electrophilicity.  相似文献   

14.
The ability of plant genotoxicity assays to predict carcinogenicity   总被引:3,自引:0,他引:3  
A number of assays have been developed which use higher plants for measuring mutagenic or cytogenetic effects of chemicals, as an indication of carcinogenicity. Plant assays require less extensive equipment, materials and personnel than most other genotoxicity tests, which is a potential advantage, particularly in less developed parts of the world. We have analyzed data on 9 plant genotoxicity assays evaluated by the Gene-Tox program of the U.S. Environmental Protection Agency, using methodologies we have recently developed to assess the capability of assays to predict carcinogenicity and carcinogenic potency. All 9 of the plant assays appear to have high sensitivity (few false negatives). Specificity (rate of true negatives) was more difficult to evaluate because of limited testing on non-carcinogens; however, available data indicate that only the Arabidopsis mutagenicity (ArM) test appears to have high specificity. Based upon their high sensitivity, plant genotoxicity tests are most appropriate for a risk-averse testing program, because although many false positives will be generated, the relatively few negative results will be quite reliable.  相似文献   

15.
The known aneuploidogens, benomyl and its metabolite, carbendazim (methyl 2-benzimidazole carbamate (MBC)), were selected for the third in a series of ongoing projects with selected pesticides. Mutagenicity and carcinogenicity data submitted to the US Environmental Protection Agency's (US EPA's) Office of Pesticide Programs (OPP) as part of the registration process are examined along with data from the open literature. Mutagenicity and carcinogenicity profiles are developed to provide a complete overview and to determine whether an association can be made between benomyl- and MBC-induced mouse liver tumors and aneuploidy. Since aneuploidogens are considered to indirectly affect DNA, the framework adopted by the Agency for evaluating any mode of action (MOA) for carcinogenesis is applied to the benomyl/MBC data.Both agents displayed consistent, positive results for aneuploidy induction but mostly negative results for gene mutations. Non-linear dose responses were seen both in vitro and in vivo for aneuploidy endpoints. No evidence was found suggesting that an alternative MOA other than aneuploidy may be operative. The data show that by 14 days of benomyl treatment, events associated with liver toxicity appear to set in motion the sequence of actions that leads to neoplasms. Genetic changes (as indicated by spindle impairment leading to missegregation of chromosomes, micronucleus induction and subsequent aneuploidy in bone marrow cells) can commence within 1-24h after dosing, well within the time frame for early key events. Critical steps associated with frank tumor formation in the mouse liver include hepatotoxicity, increased liver weights, cell proliferation, hypertrophy, and other steps involving hepatocellular alteration and eventual progression to neoplasms. The analysis, however, reveals weaknesses in the data base for both agents (i.e. no studies on mouse tubulin binding, no in vivo assays of aneuploidy on the target tissue (liver), and no clear data on cell proliferation relative to dose response and time dependency). The deficiencies in defining the MOA for benomyl/MBC introduce uncertainties into the analysis; consequently, benomyl/MBC induction of aneuploidy cannot be definitively linked to mouse liver carcinogenicity at this time.  相似文献   

16.
The antischistosomal agent, hycanthone methanesulfonate (HMS), was employed to illustrate the utility of carrying out several mutagenicity tests in a single concurrent animal experiment. Several commonly used procedures that were successfully integrated into a multiple testing protocol included (1) metaphase analysis in bone marrow, (2) micronucleus test in bone marrow, (3) analysis of the urine for mutagenic constituents, and (4) the host-mediated assay using Salmonella typhimurium. In addition to these animal studies, in vitro mutagenicity testing with and without activation was carried out using S. typhimurium. HMS produced positive, dose--response effects in in vitro tests, metaphase analysis, micronucleus test, and urine analysis, but not in the host-mediated assay. The results of these integrated techniques suggest that such a protocol may be a benefit to those concerned with mutagenicity testing of chemicals.  相似文献   

17.
In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.  相似文献   

18.
Hiraga and Fujii have recently reported that F344 rats consuming diets with high levels of sodium orthophenylphenate (SOPP) developed bladder tumors after 13–91 weeks (Fd. Cosmet. Toxicol., 19 (1981) 303). Several dose levels were tested and doses above 1.0% SOPP by weight appeared to cause an increase in both toxicity and bladder carcinogenicity. In order to put these studies into better perspective, the effects of feeding diets containing SOPP or orthophenylphenol (OPP) to F344 male rats for varying lengths of time were characterized.Hyperplasia of the bladder epithelium was noted in rats consuming diets containing 2% SOPP (equivalent to 1000–1500 mg/kg/day) after 1–2 weeks, with epithelial thickening increasing through 90 days. No bladder lesions were seen in the group consuming 2% OPP but focal kidney lesions were noted. In contrast to the results reported by Hiraga and Fujii, no tumors of the urinary tract were observed following 90 days of consumption of the 2% SOPP diet.The potential of these chemicals to induce genotoxic lesions was studied. No detectable increases in the reversion rates of Salmonella typhimurium (strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538) were seen at concentrations of SOPP up to 5.8 · 10?4 M. SOPP also failed to produce a detectable increase in unscheduled DNA synthesis in primary rat hepatocytes at concentrations up to 1 · 10?4 M. No covalently-bound radioactivity was observed in DNA purified from the bladders of rats gavaged with 500 mg/kg [14C]SOPP or [14C]OPP (detection limit < 1 alkylation/106 nucleotides). These results suggest little or no genotoxicity for OPP or SOPP.The metabolism of OPP and SOPP in male F344 rats was shown to be dose-dependent. After gavage with 50 mg/kg or less, most of the administered material was recovered in the urine as glucuronide or sulfate conjugates of the parent material. After gavage with 500 mg/kg a new metabolite, apparently produced by mixed function oxidases, was observed. This metabolite was characterized by gas chromatography/mass spectroscopy as a conjugate of dihydroxybiphenyl. It is postulated that the potentially reactive metabolites produced by this oxidative pathway may be associated with the toxicity induced by high concentrations of OPP or SOPP.Thus the bladder toxicity and carcinogenicity of SOPP and the renal toxicity of OPP appear to occur only following the administration of high doses which saturate the normal conjugation pathways. However, since no genotoxicity was detected even at saturating doses, it appears unlikely that exposure to subtoxic doses would cause any significant increase in carcinogenic risk.  相似文献   

19.
Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals.  相似文献   

20.
John Ashby  Brita Beije   《Mutation research》1985,150(1-2):383-392
Oral dosing of between 5–30 mg/kg of cyclophosphamide (CP) to Alderley Park rats induced micronuclei in the bone marrow between 12 and 36 h after dosing, but failed to induce unscheduled DNA synthesis (UDS) in the liver at similar dose levels and treatment periods. Dose levels of > 30 mg/kg were toxic to the liver. In contrast, 2-acetylaminofluorene (2AAF) induced UDS in the rat liver between 4–36 h after dosing, but gave only a weak response in the bone marrow assay at dose levels between 0.5 and 2 g/kg. Selected observations were made for each chemical using both tissues of the same test animal.

It is concluded that an assessment of the genotoxicity in vivo of chemicals defined as genotoxic in vitro will contribute to an assessment of their possible mammalian carcinogenicity, and that these should involve assays conducted using both the bone marrow and the liver of rodents. Due to its relative ease of commission, the bone marrow micronucleus assay will usually be conducted first; in the case of negative results it is recommended that a liver genotoxicity assay should also be conducted. The case for employing in vivo short-term genotoxicity tests to predict the possible organotropic carcinogenicity or germ cell mutagenicity of a new in vitro genotoxin is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号