共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract Diurnal cycling of osmotic potential was studied in leaves of cotton plants (Gossypium hirsutum L.) grown in the field. Osmotic potential was determined by a pressure-volume procedure as the value coinciding with zero turgor. In plants grown under favourable conditions (no water stress or N stress), osmotic potential at zero-turgor measured at midday was initially about 0.3 MPa lower than before dawn, but this cycling disappeared during the season as the number of fruits per plant increased. In water-stressed or N-deficient plants, osmotic cycling was decreased or even eliminated. Across treatments, cycling of osmotic potential occurred only when plants carried at least 560 cm2 of leaf area per fruit. The results are interpreted to mean that diurnal cycling of osmotic potential reveals a ‘sink-limited’ condition within the plant. 相似文献
3.
4.
Ecological traps, poor-quality habitat that nonetheless attract individuals, have been observed in both natural and human-altered settings. Until recently, ecological traps were considered a kind of source–sink system, but source–sink theory does not model maladaptive habitat choice, and therefore cannot accurately represent ecological traps or predict their population-level consequences. Although recent models of ecological traps addressed this problem, they used patch-based models containing only two habitats that were very different from one another, but were internally homogeneous. These sorts of patch models may not apply to many real populations, and using them for populations in landscapes with mosaic or gradient habitat structures may be misleading. I developed models that treat source–sink dynamics and ecological traps as special cases of a single process, in which the attractiveness and quality of the habitat are separate variables that can be either positively or negatively related, and in which habitat quality varies continuously throughout the landscape. As expected, sinks are less detrimental to populations than ecological traps, in which preferential use of poor habitat elevates extinction risk. Furthermore, ecological traps may be undetected, and may even appear to be sources, when population sizes are large, but may still prevent recovery in spite of the availability of high-quality habitat when populations drop below threshold levels. Conservation biologists do not routinely consider the possibility that apparent sinks are actually traps, but since traps should be associated with the rapidly changing and novel habitat characteristics primarily produced by human activities, ecological traps should be considered an important and potentially widespread conservation concern. 相似文献
5.
Although the influence of dispersal on coexistence mechanisms in metacommunities has received great emphasis, few studies have addressed how such influence is affected varying regional heterogeneity. We present a mechanistic model of resource competition in a metacommunity based on classical models of plant competition for limiting resources. We defined regional heterogeneity as the differences in resource supply rates (or resource availabilities) across local communities. As suggested by previous work, the highest diversify occurred at intermediate levels of dispersal among local communities. However our model shows how the effects of dispersal depend on the amount of heterogeneity among local communities and vice versa. Both regional and local species richness were the highest when heterogeneity was intermediate. We suggest that empirical studies that found no evidence for source–sink or mass effects at the community level may have examined communities with limited ranges of dispersal and regional heterogeneity. This model of species coexistence contributes to a broader understanding of patterns in real communities. 相似文献
6.
Poor seed development in sunflower may result from insufficient assimilate supply (source limitation). To test this hypothesis, the effects of changed source–sink ratio on seed set (measured as percentage of empty achenes) and seed filling (measured as dry mass per filled achene) in individual plants were investigated. Source–sink ratio, defined as leaf area per floret (LAF), was experimentally altered using invasive (floret removal, defoliation) and non‐invasive (pulse of chilling, short days or shading during leaf or floret initiation) treatments. Shading at floret initiation proved the most effective non‐invasive method. Generally, an increase, or decrease, in LAF improved, or impaired, both seed set and filling. Increasing LAF by 2.0 cm2[95% confidence interval (1.5, 2.5)] decreased the percentage of empty achenes by 36.9%‐points (?41.9, ?30.9) and increased dry mass per filled achene by 20.1 mg (13.6, 26.7) in the capitulum centre. The effect of source–sink ratio on seed set was always strongest in the centre, whereas peripheral whorls were not affected. Achene mass was affected in all parts of the capitulum. It is concluded that source limitation is a major cause for empty achenes in sunflower plants grown under non‐stress conditions. 相似文献
7.
Models of source–sink population dynamics have to make assumptions about whether, and eventually how, demographic parameters in source habitats are dependent on the demography in sink habitats. However, the empirical basis for making such assumptions has been weak. Here we report a study on experimental root vole populations, where estimates of demographic parameters were contrasted between source patches in source–sink (treatment) and source–source systems (control). In the presence of a sink patch (simulated by a pulsed removal of immigrants), source‐patch populations failed to increase over the breeding season, mainly due to a high spatially density‐dependent dispersal rate from source to sink patches. The per capita recruitment rate was almost two times higher in source–sink than in the source–source systems, but this did not compensate for the loss rate due to dispersal from source to sink patches. Sex ratio in the source–sink systems became less female biased, probably as a result of an enhanced frequency of dispersal movements in females. Good knowledge of the degree of density‐and habitat‐dependent dispersal is critical for predicting the dynamics of source–sink populations. 相似文献
8.
陆地生态系统碳源与碳汇及其影响机制研究进展 总被引:25,自引:2,他引:25
全球碳循环研究中发现,目前已知碳源与碳汇不能达到平衡。存在一个很大的碳失汇。大气、海洋和陆地生态系统是人工源CO2的3个可能的容纳汇,其中陆地生态系统最复杂、最具不确定性,因此陆地生态系统碳源与碳汇研究是全球碳循环研究的核心问题之一。大气成分监测、CO2通量测定、森林资源清查以及模型模拟等方面的研究都表明,CO2施肥效应、氮沉降增加、污染、全球气候变化以及土地利用变化,是影响陆地生态系统碳储量的主要生态机制,但不确定在过去的10~100年以及未来哪一种机制起最主要的作用。 相似文献
9.
Background and Aims
Fruit set in indeterminate plant species largely depends on the balance between source and sink strength. Plants of these species show fluctuations in fruit set during the growing season. It was tested whether differences in fruit sink strength among the cultivars explained the differences in fruit-set patterns.Methods
Capsicum was chosen as a model plant. Six cultivars with differences in fruit set, fruit size and plant growth were evaluated in a greenhouse experiment. Fruit-set patterns, generative and vegetative sink strength, source strength and the source : sink ratio at fruit set were determined. Sink strength was quantified as potential growth rate. Fruit set was related to total fruit sink strength and the source : sink ratio. The effect of differences observed in above-mentioned parameters on fruit-set patterns was examined using a simple simulation model.Key Results
Sink strengths of individual fruits differed greatly among cultivars. Week-to-week fruit set in large-fruited cultivars fluctuated due to large fluctuations in total fruit sink strength, but in small-fruited cultivars, total fruit sink strength and fruit set were relatively constant. Large variations in week-to-week fruit set were correlated with a low fruit-set percentage. The source : sink threshold for fruit set was higher in large-fruited cultivars. Simulations showed that within the range of parameter values found in the experiment, fruit sink strength and source : sink threshold for fruit set had the largest impact on fruit set: an increase in these parameters decreased the average percentage fruit set and increased variation in weekly fruit set. Both were needed to explain the fruit-set patterns observed. The differences observed in the other parameters (e.g. source strength) had a lower effect on fruit set.Conclusions
Both individual fruit sink strength and the source : sink threshold for fruit set were needed to explain the differences observed between fruit-set patterns of the six cultivars. 相似文献10.
Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics 总被引:1,自引:0,他引:1
Robinson D 《Proceedings. Biological sciences / The Royal Society》2007,274(1626):2753-2759
Recent evidence suggests that significantly more plant carbon (C) is stored below ground than existing estimates indicate. This study explores the implications for biome C pool sizes and global C fluxes. It predicts a root C pool of at least 268 Pg, 68% larger than previously thought. Although still a low-precision estimate (owing to the uncertainties of biome-scale measurements), a global root C pool this large implies stronger land C sinks, particularly in tropical and temperate forests, shrubland and savanna. The land sink predicted from revised C inventories is 2.7 Pg yr(-1). This is 0.1 Pg yr(-1) larger than current estimates, within the uncertainties associated with global C fluxes, but conflicting with a smaller sink (2.4 Pg yr(-1)) estimated from C balance. Sink estimates derived from C inventories and C balance match, however, if global soil C is assumed to be declining by 0.4-0.7% yr(-1), rates that agree with long-term regional rates of soil C loss. Either possibility, a stronger land C sink or widespread soil C loss, argues that these features of the global C cycle should be reassessed to improve the accuracy and precision of C flux and pool estimates at both global and biome scales. 相似文献
11.
12.
Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach 总被引:4,自引:0,他引:4
Accumulation of assimilates in source leaves of magnesium‐deficient plants is a well‐known feature. We had wished to determine whether metabolite concentrations in sink leaves and roots are affected by magnesium nutrition. Eight‐week‐old spinach plants were supplied either with a complete nutrient solution (control plants) or with one lacking Mg (deficient plants) for 12 days. Shoot and root fresh weights and dry weights were lower in deficient than in control plants. Mg concentrations in deficient plants were 11% of controls in source leaves, 12% in sink leaves and 26% in roots, respectively. As compared with controls, increases were found in starch and amino acids in source leaves and in sucrose, hexoses, starch and amino acids in sink leaves, whereas they were only slightly enhanced in roots. In phloem sap of magnesium‐deficient and control plants no differences in sucrose and amino acid concentrations were found. To prove that sink leaves were the importing organs they were shaded, which did not alter the response to magnesium deficiency as compared with that without shading. Since in the shaded sink leaves the photosynthetic production of metabolites could be excluded, those carbohydrates and amino acids that accumulated in the sink leaves of the deficient plants must have been imported from the source leaves. It is concluded that in magnesium‐deficient spinach plants the growth of sink leaves and roots was not limited by carbohydrate or amino acid supply. It is proposed that the accumulation of assimilates in the source leaves of Mg‐deficient plants results from a lack of utilization of assimilates in the sink leaves. 相似文献
13.
14.
Diurnal export and carbon economy in an expanding source leaf of cucumber at contrasting source and sink temperature 总被引:2,自引:0,他引:2
Effects of contrasting temperatures of an expanding leaf (source) and of remaining plant parts (sink) on diurnal export and distribution of carbon were studied in seedlings of Cucumis sativus L., cv. Farbio. The time course of the rate of export was calculated by measuring simultaneously the exchange of 14CO2 and the amount of 14C in the source leaf by means of a Geiger-Müller detector using a steady-state labelling technique. In all treatments average export rate during the night (16 h) was maximally 50% of the average rate during the 8-h day. Temperature affected the diurnal course of export via the source leaf and the sink in different ways. At a source leaf temperature of 25 or 30°C export stopped 12 h after start of the night, whereas at 20°C export continued throughout the night. However, the total amount of carbon exported during a 24 h cycle, expressed as a proportion of the amount of carbon assimilated, was the same at source leaf temperatures of 20 or 30°C. Thus source leaf temperature did not affect the distribution of assimilates between source and sink, in contrast to sink temperature. After 24 h at a sink temperature of 30°C, 20% more 14C was exported to plant parts below the source leaf than with a sink temperature of 20°C, at the expense of carbon remaining in the source. During the day less starch and more structural dry matter was formed at a source leaf temperature of 30°C than at 20°C. After a complete day/night cycle, however, there was no difference between the treatments. Starch was the primary carbon source during the night, and the decline in the rate of export coincided with the depletion of starch. Thus the decline in the rate of export at a source leaf temperature of 25 or 30°C at 12 h after the start of the night was due to the depletion of starch at that time. Similarly, at 20°C export could continue until the end of the night as the starch degradation supplied assimilates during the whole night. 相似文献
15.
Plant Demography and Habitat: A Comparative Approach 总被引:4,自引:0,他引:4
Abstract Progress in plant demography will depend upon being able to synthesize a large body of data and this requires a means of comparing populations between sites and species. We have employed a comparative technique using elasticity analysis of stage-projection matrices to partition the contributions of fecundity (F), survival (L) and growth (G) to the finite rate of increase λ. Ordination of populations of 77 perennial herbs and trees in G-L-F space has shown that species segregate in this triangular space according to their life history and habitat. In the present paper we use the correspondence between demographic parameters and habitat revealed by this method to predict how succession and a variety of environmental factors such as grazing and fire are likely to alter the demography of populations and ultimately to change the composition of communities. 相似文献
16.
OUTI LÄHTEENOJA KALLE RUOKOLAINEN LEIF SCHULMAN† MARKKU OINONEN‡ 《Global Change Biology》2009,15(9):2311-2320
In tropical lowlands, peatlands are commonly reported from Southeast Asia, and especially Indonesian tropical peatlands are known as considerable C sinks and sources. In contrast, Amazonia has been clearly understudied in this context. In this study, based on field observations from 17 wetland sites in Peruvian lowland Amazonia, we report 0–5.9 m thick peat deposits from 16 sites. Only one of the studied sites did not contain any kind of peat deposit (considering pure peat and clayey peat). Historic yearly peat and C accumulation rates, based on radiocarbon dating of peat samples from five sites, varied from 0.94 ± 0.99 to 4.88 ± 1.65 mm, and from 26 ± 3 to 195 ± 70 g C m−2 , respectively. The long-term apparent peat and C accumulation rates varied from 1.69 ± 0.03 to 2.56 ± 0.12 mm yr−1 , and from 39 ± 10 to 85 ± 30 g C m−2 yr−1 , respectively. These accumulation rates are comparable to those determined in the Indonesian tropical peatlands. Under altered conditions, Indonesian peatlands can release globally relevant amounts of C to the atmosphere. Considering the estimated total area of Amazonian peatlands (150 000 km2 ) close to that of the Indonesian ones (200 728 km2 ) as well as several factors threatening the Amazonian peatlands, we suggest that the total C stocks and fluxes associated with Amazonian peatlands may be of global significance. 相似文献
17.
中国森林C汇功能基本估计 总被引:50,自引:7,他引:50
根据森林资源消长状况和未来变化趋势,对中国森林因C的现状和潜力进行了估计和预测.结果表明,中国森林目前C积累高于C释放,年平均净固C量为0.8627×108t·a-1,在未来20年内中国森林净固C能力约增加773×104t·a-1.到2000年,中国森林固C能力将达到1.4697×108t·a-1. 相似文献
18.
19.
Colonization, riparian habitat selection and home range size in a reintroduced population of European beavers in the Loire 总被引:1,自引:0,他引:1
1. Colonization in a reintroduced population of European beavers in the Loire Valley was studied between 1974 and 1999. It followed a discontinuous remoteness model and a scattered distribution, beavers occupying only 25% of the river system over the 2800 km explored.
2. After 5 years, the colonization rate reached 104.2% year–1 of new sites occupied (SD 75% year–1 ), before dropping over the next 20 years. Nevertheless, the number of new colonies per km (0.125) remained stable throughout the years.
3. Populus nigra , Salix alba and Fraxinus angustifolia were the dominant woody species in beaver sites, often associated with some herbaceous species.
4. The length of willow grove dominated by S. alba and P. nigra ( x ) was the best predictor of beaver home range ( y ), fitting the equation y =−0.742 x + 5.9. Long-term maintenance of the population requires a minimum of 1.79-km of willows per colony.
5. In cutting tree trunks, beavers stimulate shoot development from the remaining stumps. They rejuvenate riparian forests, increase the number of tree stems and help stabilize the banks. Their effect on woody plant morphogenesis may have consequences for the helophyte communities used as food or habitat by other aquatic species. 相似文献
2. After 5 years, the colonization rate reached 104.2% year
3. Populus nigra , Salix alba and Fraxinus angustifolia were the dominant woody species in beaver sites, often associated with some herbaceous species.
4. The length of willow grove dominated by S. alba and P. nigra ( x ) was the best predictor of beaver home range ( y ), fitting the equation y =−0.742 x + 5.9. Long-term maintenance of the population requires a minimum of 1.79-km of willows per colony.
5. In cutting tree trunks, beavers stimulate shoot development from the remaining stumps. They rejuvenate riparian forests, increase the number of tree stems and help stabilize the banks. Their effect on woody plant morphogenesis may have consequences for the helophyte communities used as food or habitat by other aquatic species. 相似文献
20.
KIM O’KEEFE UMA RAMAKRISHNAN MARCEL VAN TUINEN ELIZABETH A. HADLY 《Molecular ecology》2009,18(23):4775-4789
Assessing the relative role of evolutionary processes on genetic diversity is critical for understanding species response to climatic change. However, many processes, independent of climate, can lead to the same genetic pattern. Because effective population size and gene flow are affected directly by abundance and dispersal, population ecology has the potential to profoundly influence patterns of genetic variation over microevolutionary timescales. Here, we use aDNA data and simulations to explore the influence of population ecology and Holocene climate change on genetic diversity of the Uinta ground squirrel (Spermophilus armatus). We examined phylochronology from three modern and two ancient populations spanning the climate transitions of the last 3000 years. Population genetic analyses based on summary statistics suggest that changes in genetic diversity and structure coincided with the Medieval Warm Period (MWP), c. 1000 years ago. Serial coalescent simulations allowed us to move beyond correlation with climate to statistically compare the likelihoods of alternative population histories given the observed data. The data best fit source–sink models that include large, mid‐elevation populations that exchange many migrants and small populations at the elevational extremes. While the MWP is likely to have reduced genetic diversity, our model‐testing approach revealed that MWP‐driven changes in genetic structure were not better supported for the range of models explored. Our results point to the importance of species ecology in understanding responses to climate, and showcase the use of ancient genetic data and simulation‐based inference for unraveling the relative roles of microevolutionary processes. 相似文献