首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy and apoptosis are two major interconnected host cell responses to viral infection, including influenza A virus (IAV). Thus, delineating these events could facilitate the development of better treatment options and provide an effective anti-viral strategy for controlling IAV infection. We used A549 cells and mouse embryonic fibroblasts (MEF) to study the role of virus-induced autophagy and apoptosis, the cross-talk between both pathways, and their relation to IAV infection [ATCC strain A/Puerto Rico/8/34(H1N1) (hereafter; PR8)]. PR8-infected and mock-infected cells were analyzed by immunoblotting, immunofluorescence confocal microscopy, electron microscopy and flow cytometry (FACS). We found that PR8 infection simultaneously induced autophagy and apoptosis in A549 cells. Autophagy was associated with Bax and Bak activation, intrinsic caspase cleavage and subsequent PARP-1 and BID cleavage. Both Bax knockout (KO) and Bax/Bak double knockout MEFs displayed inhibition of virus-induced cytopathology and cell death and diminished virus-mediated caspase activation, suggesting that virus-induced apoptosis is Bax/Bak-dependent. Biochemical inhibition of autophagy induction with 3-methyladenine blocked both virus replication and apoptosis pathways. These effects were replicated using autophagy-refractory Atg3 KO and Atg5 KO cells. Taken together, our data indicate that PR8 infection simultaneously induces autophagy and Bax/caspase-dependent apoptosis, with autophagy playing a role to support PR8 replication, in part, by modulating virus-induced apoptosis.  相似文献   

2.
Although processing of mitochondrial apoptosis-inducing factor (AIF) is essential for its function during apoptosis in most cell types, the detailed mechanisms of AIF cleavage remain elusive. Recent findings indicate that the proteolytic process is Ca2+-dependent and that it is mediated by a calpain located in the mitochondrial intermembrane space. We can now report that, in addition to a sustained intracellular Ca2+ elevation, enhanced formation of reactive oxygen species (ROS) is a prerequisite step for AIF to be cleaved and released from mitochondria in staurosporine-treated cells. These events occurred independent of the redox state of the mitochondria and were not influenced by binding of pyridine nucleotides to AIF. Chelation of cytosolic Ca2+ by BAPTA/AM suppressed the elevation of both Ca2+ and ROS, suggesting that the Ca2+ rise was the most upstream signal required for AIF processing. We could further show that the stimulated ROS production leads to oxidative modification (carbonylation) of AIF, which markedly increases its rate of cleavage by calpain. Accordingly, pretreatment of the cells with antioxidants blocked AIF carbonylation, as well as its subsequent cleavage and release from the mitochondria. Combined, our data provide evidence that ROS-mediated, posttranslational modification of AIF is critical for its cleavage by calpain and thus for AIF-mediated cell death.  相似文献   

3.
《Autophagy》2013,9(2):142-144
Bax and Bak, act as a gateway for caspase-mediated cell death. mTOR, an Akt downstream effector, plays a critical role in cell proliferation, growth and survival. The inhibition of mTOR induces autophagy, whereas apoptosis is a minor cell death mechanism in irradiated solid tumors.

We explored possible alternative pathways for cell death induced by radiation in Bax/Bak-/- double knockout (DKO) MEF cells and wild-type cells, and we compared the cell survival: the Bax/Bak-/- cells were more radiosensitive than the wild-type cells. The irradiated cells displayed an increase in the pro-autophagic proteins ATG5-ATG12 and Beclin-1.

These results are surprising in the fact that the inhibition of apoptosis resulted in increasing radiosensitivity; indicating that perhaps autophagy is the cornerstone in the cell radiation sensitivity regulation. Furthermore, irradiation up-regulates autophagic programmed cell death in cells that are unable to undergo Bax/Bak-mediated apoptosis. We hypothesize the presence of a phosphatase—possibly PTEN, an Akt/mTOR negative regulator that can be inhibited by Bax/Bak. This fits with our hypothesis of Bax/Bak as a down-regulator of autophagy.

We are currently conducting experiments to explore the relationship between apoptosis and autophagy. Future directions in research include strategies targeting Bax/Bak in cancer xenografts and exploring novel radiosensitizers targeting autophagy pathways.

Addendum to:

Autophagy for Cancer Therapy through Inhibition of Proapoptotic Proteins and mTOR Signaling

K.W. Kim, R.W. Mutter, C. Cao, J.M. Albert, M. Freeman, D.E. Hallahan and B. Lu

J Biol Chem 2006; Epub ahead of print  相似文献   

4.
目的:探究补骨脂酚(Bakuchiol,Bak)对肿瘤坏死因子相关凋亡诱导配体(Tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)抗HepG2细胞作用的影响及内在机制。方法:常规培养HepG2细胞,给予梯度浓度的Bak处理,检测细胞活力。联合应用Bak与TRAIL处理,检测细胞活力。Western blot检测Bak处理后氧化应激水平、死亡受体4(Death Receptor 4,DR4)、DR5的表达变化。联合应用Bak与TRAIL检测凋亡情况。进而引入ROS清除剂NAC,联合NAC处理后,检测ROS、DR4、DR5以及凋亡情况。结果:Bak剂量依赖地抑制了HepG2细胞的活力,联合应用Bak+TRAIL对细胞活力的抑制作用优于单独用药。Bak处理后氧化应激水平升高,体现在ROS增加,GSH水平下降;Western blot检测发现Bak处理后DR4、DR5表达增加。联合应用Bak+TRAIL显著增加了细胞凋亡蛋白Bax的表达,抑制了抗凋亡蛋白Bcl2的表达。引入ROS阻断剂NAC处理后,与Bak+TRAIL组相比,ROS水平下降,DR4、DR5表达减少。凋亡检测发现NAC处理降低了Bak+TRAIL引起的细胞凋亡。结论:Bak可以显著增强TRAIL引起的HepG2细胞凋亡,该作用可能与Bak激活氧化应激进而上调DR4、DR5表达有关。  相似文献   

5.
Bax/Bak activation and cardiolipin peroxidation are essential for cytochrome c release during apoptosis, yet, the link between them remains elusive. We report that sequence of events after exposure of mouse embryonic fibroblast (MEF) cells to actinomycin D followed the order: Bax translocation → superoxide production → cardiolipin peroxidation. Genetic ablation of Bax/Bak inhibited actinomycin D induced superoxide production and cardiolipin peroxidation. Rotenone caused robust superoxide generation but did not trigger cardiolipin peroxidation in Bax/Bak double knockout MEF cells. This suggests that, in addition to participating in ROS generation, Bax/Bak play another specific role in cardiolipin oxidation. In isolated mitochondria, recombinant Bax enhanced succinate induced cardiolipin oxidation and cytochrome c release. Mitochondrial peroxidase activity, likely involved in cardiolipin peroxidation, was enhanced upon incubation with recombinant Bax. Thus, cardiolipin peroxidation may be causatively and time-dependently related to Bax/Bak effects on ROS generation and peroxidase activation of cytochrome c.  相似文献   

6.
Reactive oxygen species (ROS) concurrently instigate apoptosis and autophagy pathways, but the link between these processes remains unclear. Because cytotoxic ROS formation is exploited in anticancer therapy, such as in photodynamic therapy (PDT), a better understanding of the complex interplay between autophagy and apoptosis is urgently required. Previously, we reported that ROS generated by PDT with an endoplasmic reticulum (ER)-associated sensitizer leads to loss of ER-Ca2+ homeostasis, ER stress and apoptosis. Here we show that PDT prompted Akt-mTOR (mammalian target of rapamycin) pathway down-regulation and stimulated macroautophagy (MA) in cancer and normal cells. Overexpression of the antioxidant enzyme glutathione peroxidase-4 reversed mTOR down-regulation and blocked MA progression and apoptosis. Attenuating MA using Atg5 knockdown or 3-methyladenine, reduced clearance of oxidatively damaged proteins and increased apoptosis, thus revealing a cytoprotective role of MA in PDT. Paradoxically, genetic loss of MA improved clearance of oxidized proteins and reduced photokilling. We found that up-regulation of chaperone-mediated autophagy (CMA) in unstressed Atg5−/− cells compensated for MA loss and increased cellular resistance to PDT. CMA-deficient cells were significantly sensitized to photokilling but were protected against the ER stressor thapsigargin. These results disclose a stress-specific recruitment of autophagy pathways with cytoprotective function and unravel CMA as the dominant defence mechanism against PDT.  相似文献   

7.
通过阐明C5a、calpain和Atg5相互作用,为开展新的研究寻找方向.中性粒细胞凋亡控制炎症反应及其强度,多种疾病和中性粒细胞凋亡失调有关,但其发生机制尚未阐明.C5a为补体片段,有多种功能,如诱导中性粒细胞趋化、呼吸爆发、增强吞噬、颗粒酶释放和延迟凋亡.已知calpain涉及中性粒细胞功能及凋亡调节并对该凋亡发生具有特异性.不同刺激因素可通过不同路径调节不同calpain亚型的活性. 已有报道C5a可以通过调节calpain亚型活性而调节中性粒细胞的趋化反应.另外,自噬是真核细胞中广泛存在的生物过程,具有细胞保护作用,Atg5对于自噬体形成必不可少.Calpain可裂解Atg5为24 ku tAtg5,使其失去形成自噬体的功能并介导凋亡.Atg5参与了自噬和凋亡的转换.  相似文献   

8.
The neuroprotective activity of pyruvate has been confirmed in previous in vivo and in vitro studies. Here, we report a novel mechanism that pyruvate prevents SH-SY5Y cells from glutamate excitotoxicity by regulating death-associated protein kinase 1 (DAPK1) protein complex. Our results showed pyruvate regulated DAPK1 protein complex to protect cells by two ways. First, pyruvate induced the dissociation of DAPK1 with NMDA receptors. The disruption of the DAPK1-NMDA receptors complex resulted in a decrease in NMDA receptors phosphorylation. Then the glutamate-stimulated Ca2+ influx was inhibited and intracellular Ca2+ overload was alleviated, which blocked the release of cytochrome c and cell death. In addition, increased Bcl-xL induced by pyruvate regulated Bax/Bak dependent death by inhibiting the release of cytochrome c from the mitochondrial inter-membrane space into the cytosol. As a result, the cytochrome c-initiated caspase cascade, including caspase-3 and caspase-9, was inhibited. Second, pyruvate promoted the association between DAPK1 and Beclin-1, which resulted in autophagy activation. The autophagy inhibitor 3-methyladenine reversed the protection afforded by pyruvate. Furthermore, the attenuation of mitochondrial damage induced by pyruvate was partly reduced by 3-methyladenine. This suggested autophagy mediated pyruvate protection by preventing mitochondrial damage. Taken together, pyruvate protects cells from glutamate excitotoxicity by regulating DAPK1 complexes, both through dissociation of DAPK1 from NMDA receptors and association of DAPK1 with Beclin-1. They go forward to protect cells by attenuating Ca2+ overload and activating autophagy. Finally, a convergence of the two ways protects mitochondria from glutamate excitotoxicity, which leads to cell survival.  相似文献   

9.
The irradiation of fat-containing food forms 2-dodecylcyclobutanone (2-DCB) from palmitic acid (PA). In this study, we investigated whether 2-DCB and PA induce apoptosis in human lymphoma U937 cells. We found that cell viability decreased by 2-DCB and apoptosis was induced by 2-DCB and PA. 2-DCB and PA significantly enhanced the formation of intracellular reactive oxygen species (ROS). Apoptosis induced by 2-DCB and PA was strongly prevented by an antioxidant, N-acetyl-l-cysteine. The treatment with 2-DCB and PA resulted in the loss of mitochondrial membrane potential, and Fas, caspase-8 and caspase-3 activation. Pretreatment with a pan-caspase inhibitor (z-VAD) significantly inhibited apoptosis induced by 2-DCB and PA. Moreover, 2-DCB and PA also induced Bax up-regulation, the reduction in Bcl-2 expression level, Bid cleavage and the release of cytochrome c from the mitochondria to the cytosol. In addition, an increase in intracellular Ca2+ concentration ([Ca2+]i) was observed after the treatment with 2-DCB and PA. Our results indicated that intracellular ROS generation, the modulation of the Fas-mitochondrion-caspase-dependent pathway and the increase in [Ca2+]i involved in apoptosis are induced by 2-DCB and PA in U937 cells.  相似文献   

10.
BackgroundCell surface heparan sulfate proteoglycans (HSPG) play an important role in atherogenesis. We hypothesized that degradation of HSPG may increase the binding of atherogenic oxidized low density lipoprotein (ox-LDL) to endothelial cells, and result in extensive HSPG degradation as well as autophagy and apoptosis.MethodsPrimary human umbilical vein endothelial cells (HUVECs) were used to study the expression of lectin-like ox-LDL receptor-1 (LOX-1), HSPG, autophagy and apoptosis in response to ox-LDL and heparinase III (Hep III).ResultsAs expected, ox-LDL treatment resulted in LOX-1 expression, ox-LDL uptake and reactive oxygen species (ROS) generation. Ox-LDL treatment also resulted in a modest degradation of HSPG and increase in autophagy (expression of LC3, beclin-1 and Atg5) and apoptosis (enhanced expression of caspases and Bax, and reduced expression of Bcl-2 and Bcl-xL). The effects of ox-LDL were blocked by pretreatment of cells with LOX-1 antibody or apocynin, an NADPH oxidase inhibitor. Hep III alone caused HSPG degradation and slightly, but significantly, increased ROS generation, and induced autophagy and caspase expression. However, autophagy and apoptosis induced by Hep III were not affected by apocynin or LOX-1 antibody. Importantly, Hep III pretreatment of cells significantly enhanced ox-LDL-induced HSPG degradation, LOX-1 expression, ox-LDL uptake and ROS generation as well as autophagy and apoptosis.ConclusionThese data demonstrate that Hep III enhances the pro-atherosclerotic characteristics in HUVECs induced by ox-LDL.  相似文献   

11.
Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.  相似文献   

12.
Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating JNK to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca2+]i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca2+]i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.  相似文献   

13.
《Autophagy》2013,9(7):855-862
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition, and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes, and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation, and mPTP opening.  相似文献   

14.
Studies were designed to investigate the effects of baicalein on mouse–rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, reactive oxygen species (ROS), cytoplasmic Ca2+, mitochondrial membrane potential (MMP), apoptosis induction, and caspases-3 activity were examined by flow cytometric assay. Apoptosis-associated proteins such as p53, Bax, Bcl-2, cytochrome c, and caspase-3 were examined by Western blot. We demonstrated the increase in the levels of p53, Bax, and cytochrome c and decrease in the level of Bcl-2, which are associated with the induction of apoptotic cell death after 24 h treatment with baicalein in N18 cells. Baicalein induced an increase in the cytoplasmic levels of ROS and Ca2+ in 1 h and reached their peak at 3 h, and thereafter a loss of MMP by flow cytometry. We also demonstrated a release of the cytochrome c from mitochondria into cytosol and an activation of caspase-3, which led to the occurrence of apoptosis in N18 cells treated with baicalein by Western blot. Pretreatment was conducted with BAPTA (intracellular calcium chelator) in baicalein-treated cells, the decline of MMP was recovered, and the increase in the level of cytoplasmic Ca2+ was suppressed, and the proportion of apoptosis was also markedly diminished. In conclusion, our data suggests that oxidative stress and cellular Ca2+ modulates the baicalein-induced cell death via a Ca2+-dependent mitochondrial death pathway in N18 cells.  相似文献   

15.
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation and mPTP opening.Key words: Bnip3, autophagy, cardiac myocytes, mitochondria, permeability transition pore, cyclophilin D  相似文献   

16.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

17.
ObjectiveHypertension induces end-organ damage through inflammation, and autophagy plays a crucial role in the regulation of cellular homeostasis. In the present study, we aimed to define the role of autophagy in the development of inflammation and cardiac injury induced by angiotensin II (Ang II).Methods and ResultsAutophagy protein 5 (Atg5) haplodeficiency (Atg5+/−) and age-matched wild-type (WT) C57BL/6 J mice were infused with Ang II (1500 ng/kg/min) or saline for 7 days. Heart sections were stained with hematoxylin and eosin (H&E), Masson's trichrome, and immunohistochemical stains. Cytokine and LC3 levels were measured using real-time PCR or western blot analysis. After Ang II infusion, the WT mice exhibited marked macrophage accumulation, cytokine expression, and reactive oxygen species (ROS) production compared with saline-infused controls. However, these effects induced by Ang II infusion were aggravated in Atg5+/− mice. These effects were associated with Atg5-mediated impaired autophagy, accompanied by increased production of ROS and activation of nuclear factor-κB (NF-κB) in macrophages. Finally, increased cardiac inflammation in Atg5 haplodeficient mice was associated with increased cardiac fibrosis.ConclusionAtg5 deficiency-mediated autophagy increases ROS production and NF-κB activity in macrophages, thereby contributing to cardiac inflammation and injury. Thus, improving autophagy may be a novel therapeutic strategy to ameliorate hypertension-induced inflammation and organ damage.  相似文献   

18.
The surfactin can inhibit proliferation and induce apoptosis in cancer cells. Moreover, surfactin can induce cell death in human breast cancer MCF-7 cells through mitochondrial pathway. However, the molecular mechanism involved in this pathway remains to be elucidated. Here, the reactive oxygen species (ROS) and Ca2+ on mitochondria permeability transition pore (MPTP) activity, and MCF-7 cell apoptosis which induced by surfactin were investigated. It is found that surfactin evoked mitochondrial ROS generation, and the surfactin-induced cell death was prevented by N-acetylcysteine (NAC, an inhibitor of ROS). An increasing cytoplasmic Ca2+ concentration was detected in surfactin-induced MCF-7 apoptosis, which was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium). In addition, the relationship between ROS generation and the increase of cytoplasm Ca2+ was determined. The results showed that surfactin initially induced the ROS formation, leading to the MPTP opening accompanied with the collapse of mitochondrial membrane potential (ΔΨm). Then the cytoplasmic Ca2+ concentration increased in virtue of the changes of mitochondrial permeability, which was prevented by BAPTA-AM. Besides, cytochrome c (cyt c) was released from mitochondria to cytoplasm through the MPTP and activated caspase-9, eventually induced apoptosis. In summary, surfactin has notable anti-tumor effect on MCF-7 cells, however, there was no obvious cytotoxicity on normal cells.  相似文献   

19.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

20.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号