首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caspase 3 is critically involved in the pathway of apoptosis. We have conjugated a MTS-transport-peptide to monoclonal and polyclonal anti-caspase-3 antibodies to suppress Actinomycin D-induced apoptosis in human lymphoma T cells. The advantage of using trans-membrane antibodies compared to conventional apoptosis inhibitors is their specific target recognition in the living cell and their lower toxicity compared to conventional apoptosis inhibitors. We could show that a MTS-transport-peptide modified monoclonal anti-caspase-3 antibody reduces Actinomycin D induced apoptosis, as shown by DNA ladder electrophoresis and cell death ELISA. These results indicate that antibodies have a therapeutic potential to inhibit apoptosis in a variety of diseases.  相似文献   

2.
3.
Apoptosis occurs through a sequence of specific biochemical and morphological alterations that define the progress of cell death. The changes of the mitochondrial inner membrane potential (DeltaPsi(m)), the release of cytochrome c to the cytosol, the apoptotic volume decrease (AVD) and the activation of caspases have been measured in RAW 264.7, HeLa and Jurkat T cells incubated with molecules that induce apoptosis through the mitochondrial pathway. Our data show that NO, staurosporine, etoposide and camptothecin increased DeltaPsi(m) in macrophages but not in HeLa and Jurkat cells, that exhibited a DeltaPsi(m) decrease. Moreover, the apoptosis induced by NO in macrophages, but not that promoted by staurosporine, might occur in the absence of AVD. Analysis of the sequence of apoptotic manifestations shows that DeltaPsi(m) precedes AVD and caspase activation in RAW 264.7 cells. Inhibition of AVD abrogates apoptosis in HeLa and Jurkat T cells regardless of the stimuli used. These data suggest that the changes of DeltaPsi(m) are cell-type dependent and that AVD is dispensable for apoptosis in macrophages.  相似文献   

4.
Modulation of host cell apoptosis has been observed in many bacterial, protozoal, and viral infections. The aim of this work was to investigate the effect of viscerotropic Leishmania (L.) infantum infection on actinomycin D-induced apoptosis of the human monocytic cell line U-937. Cells were infected with L. infantum promastigotes or treated with the surface molecule lipophosphoglycan (LPG) or with parasite-free supernatant of Leishmania culture medium and submitted to action of actinomycin D as the apoptosis-inducing agent. Actinomycin D-induced apoptosis in U-937 cells was inhibited in the presence of both viable L. infantum promastigotes and soluble factors contained in Leishmania culture medium or purified LPG. Leishmania infantum affected the survival of U-937 cells via a mechanism involving inhibition of caspase-3 activation. Furthermore, protein kinase C delta (PKC delta) cleavage was increased in actinomycin D-treated U-937 cells and was inhibited by the addition of LPG. Thus, inhibition of the PKC-mediated pathways by LPG can be implicated in the enhanced survival of the parasites. These results support the claim that promastigotes of L. infantum, as well as its surface molecule, LPG, which is in part released in the culture medium, inhibit macrophage apoptosis, thus allowing intracellular parasite survival and replication.  相似文献   

5.
Transmission-through-dye (TTD) microscopy makes possible direct measurement of bacterial volume, irrespective of cell shape. The technique can be realized on any brightfield microscope and is applicable to bacteria of all shapes. TTD imaging requires that intact bacteria be immobilized on a flat transparent surface, such as a glass coverslip.  相似文献   

6.
Transmission-through-dye (TTD) microscopy makes possible direct measurement of bacterial volume, irrespective of cell shape. The technique can be realized on any brightfield microscope and is applicable to bacteria of all shapes. TTD imaging requires that intact bacteria be immobilized on a flat transparent surface, such as a glass coverslip.  相似文献   

7.
Apoptosis is characterized by a conserved series of morphological events beginning with the apoptotic volume decrease (AVD). This study investigated a role for aquaporins (AQPs) during the AVD. Inhibition of AQPs blocked the AVD in ovarian granulosa cells undergoing growth factor withdrawal and blocked downstream apoptotic events such as cell shrinkage, changes in the mitochondrial membrane potential, DNA degradation, and caspase-3 activation. The effects of AQP inhibition on the AVD and DNA degradation were consistent in thymocytes and with two additional apoptotic signals, thapsigargin and C6-ceramide. Overexpression of AQP-1 in Chinese hamster ovary (CHO-AQP-1) cells enhanced their rate of apoptosis. The AVD is driven by loss of K+ from the cell, and we hypothesize that after the AVD, AQPs become inactive, which halts further water loss and allows K+ concentrations to decrease to levels necessary for apoptotic enzyme activation. Swelling assays on granulosa cells, thymocytes, and CHO-AQP-1 cells revealed that indeed, the shrunken (apoptotic) subpopulation has very low water permeability compared with the normal-sized (nonapoptotic) subpopulation. In thymocytes, AQP-1 is present and was shown to colocalize with the plasma membrane receptor tumor necrosis factor receptor-1 (TNF-R1) both before and after the AVD, which suggests that this protein is not proteolytically cleaved and remains on the cell membrane. Overall, these data indicate that AQP-mediated water loss is important for the AVD and downstream apoptotic events, that the water permeability of the plasma membrane can control the rate of apoptosis, and that inactivation after the AVD may help create the low K+ concentration that is essential in apoptotic cells. Furthermore, inactivation of AQPs after the AVD does not appear to be through degradation or removal from the cell membrane. water movement; major intrinsic protein; channel; enzyme  相似文献   

8.
Rubashkin AA 《Tsitologiia》2011,53(8):687-689
The dynamic model of membrane transport, which describes the changing of ion contents in the cell, cell volume and membrane potential, for the first time, is applied to analysis of the apoptotic processes. It is shown that increasing of permeability of K+, and Cl(-)-channels, decreasing of permeability of Na+ together with degradation of Na+/K+ pump, KCC and NC cotransporters lead to decreasing of cell U937 volume and plasma membrane depolarization at apoptosis induced by staurosporine in concentration 1 microM. The experimental data using at calculations was published in paper (Yurinskaya et al., 2010).  相似文献   

9.
During apoptosis cells undergo a series of evolutionary conserved biochemical and morphological changes that include the loss of cell volume or an apoptotic volume decrease (AVD). This AVD response distinguishes apoptosis from other forms of cell death such as necrosis. Experiments in our laboratory and others have shown that AVD is both an early and necessary component of apoptotic death. We have now investigated the molecular basis for the AVD response in Jurkat cells and Hepatoma cells induced to undergo apoptosis with a variety of death stimuli. Our data reveal significant alterations in the flux of both sodium and  相似文献   

10.
The actinomycin D (AD)-induced apoptosis in human leukemia CMK-7 cell line is greatly accelerated by microtubule disruption with colcemid (CL). We studied the effect of antioxidants on this apoptosis in order to learn how the universal signal mediators, reactive oxygen species (ROS), are involved. Caspase-3 activation and DNA fragmentation were both suppressed by vitamin E (VE), t-butylhydroxyanisole, and luteolin. The ROS formation in the AD treatment was evidenced by flow cytometry, and further supported by suppression of caspase-3 activation by superoxide radical-forming enzyme inhibitors (TTFA, rotenone, and DPI). The inhibition of apoptosis by VE was completed during the initial 1-h treatment with AD, but it did not appear when VE was added with CL to washed cells after AD treatment. Luteolin, an iron chelator PDTC, and a water-soluble VE analogue, trolox, inhibited the apoptosis when added with CL after the AD treatment. Western blot analysis showed that the proteolytic cleavage of procaspase-9 and procaspase-3 were both inhibited when VE was added with AD or when luteolin was added with CL, and that the cytochrome c liberation was suppressed by both antioxidants. This result implies that the ROS are initially formed in lipophilic environments (e.g. mitochondrial membrane) and then they diffuse into an aqueous environment (i.e. cytoplasm) where they promote the apoptotic process in combination with the cytoskeletal disruption. Thus, the different antioxidants are effective to scavenge ROS for preventing the apoptosis in its different phases.  相似文献   

11.
12.
Apoptotic volume decrease (AVD) is prerequisite to apoptotic events that lead to cell death. In a previous study, we demonstrated in kidney proximal cells that the TASK2 channel was involved in the K+ efflux that occurred during regulatory volume decrease. The aim of the present study was to determine the role of the TASK2 channel in the regulation of AVD and apoptosis phenomenon. For this purpose renal cells were immortalized from primary cultures of proximal convoluted tubules (PCT) from wild type and TASK2 knock-out mice (task2-/-). Apoptosis was induced by staurosporine, cyclosporin A, or tumor necrosis factor alpha. Cell volume, K+ conductance, caspase-3, and intracellular reactive oxygen species (ROS) levels were monitored during AVD. In wild type PCT cells the K+ conductance activated during AVD exhibited characteristics of TASK2 currents. In task2-/- PCT cells, AVD and caspase activation were reduced by 59%. Whole cell recordings indicated that large conductance calcium-activated K+ currents inhibited by iberiotoxin (BK channels) partially compensated for the deletion of TASK2 K+ currents in the task2-/- PCT cells. This result explained the residual AVD measured in these cells. In both cell lines, apoptosis was mediated via intracellular ROS increase. Moreover AVD, K+ conductances, and caspase-3 were strongly impaired by ROS scavenger N-acetylcysteine. In conclusion, the main K+ channels involved in staurosporine, cyclosporin A, and tumor necrosis factor-alpha-induced AVD are TASK2 K+ channels in proximal wild type cells and iberiotoxin-sensitive BK channels in proximal task2-/- cells. Both K+ channels could be activated by ROS production.  相似文献   

13.
Changes in intracellular water, K+ and Na+ of U937 cells incubated in hyperosmolar medium supplemented with 200 mM sucrose have been studied. Cells were stained with acrydine orange, ethydium bromide, APOPercentage dye, which marks the phosphatidyl serine distribution on the plasma membrane; and FLICA polycaspase fluorescent dye. It was found that cell shrinkage produced by direct osmotic effect induced both a regulatory volume increase and apoptotic volume decrease. The regulatory volume increase dominated at the early stage, whereas apoptotic volume decrease prevailed at the later stage. Therefore, U937 cells were capable of triggering apoptosis and apoptotic volume decrease, despite the unimpaired regulatory volume increase response, and the current opinion that the dysfunction of the regulatory volume increase is a prerequisite for apoptosis and apoptotic volume decrease (Subramanyam et al., 2010) should be revised. It is concluded that the apoptotic volume decrease plays a significant role in preventing osmotic lysis in apoptotic cells, rather than in initiating apoptosis.  相似文献   

14.
BackgroundChlorogenic acid (CRA) is an abundant phenolic compound in the human diet. CRA has a potent antifungal effect, inducing cell death in Candida albicans. However, there are no further studies to investigate the antifungal mechanism of CRA, associated with ion channels.MethodsTo evaluate the inhibitory effects on CRA-induced cell death, C. albicans cells were pretreated with potassium and chloride channel blockers, separately. Flow cytometry was carried out to detect several hallmarks of apoptosis, such as cell cycle arrest, caspase activation, and DNA fragmentation, after staining of the cells with SYTOX green, FITC-VAD-FMK, and TUNEL.ResultsCRA caused excessive potassium efflux, and an apoptotic volume decrease (AVD) was observed. This change, in turn, induced cytosolic calcium uptake and cell cycle arrest in C. albicans. Moreover, CRA induced caspase activation and DNA fragmentation, which are considered apoptotic markers. In contrast, the potassium efflux and proapoptotic changes were inhibited when potassium channels were blocked, whereas there was no inhibitory effect when chloride channels were blocked.ConclusionsCRA induces potassium efflux, leading to AVD and G2/M cell cycle arrest in C. albicans. Therefore, potassium efflux via potassium channels regulates the CRA-induced apoptosis, stimulating several apoptotic processes.General significanceThis study improves the understanding of the antifungal mechanism of CRA and its association with ion homeostasis, thereby pointing to a role of potassium channels in CRA-induced apoptosis.  相似文献   

15.
Time course of changes in intracellular water, K+ and Na+ of U937 cells incubated in hyperosmolar medium with addition of 200 mM sucrose was studied. Ouabain-sensitive and ouabain-resistant Rb+ (K+) influxes were measured during regulatory cell volume increase (RVI) and apoptotic volume decrease (AVD). Microscopy of cells stained by Acrydine orange, Ethydium bromide, APOPercenrage Dye and polycaspase marker FLICA was performed. We found that initial osmotic cell shrinkage induced both RVI and AVD responses. RVI dominated at the early stage whereas AVD prevailed at the later stage. In view of the data obtained in U937 cells the current opinion that RVI "dysfunction" is a prerequisite for apoptosis and AVD (Subramanyam et al., 2010) should be revised. U937 cells are capable to trigger of apoptosis and AVD in spite of the unimpaired RVI response. It is concluded that AVD plays a significant role in preventing osmotic lysis of apoptotic cells rather than in the initiation of apoptosis.  相似文献   

16.
Fibroblast growth factor 23 (FGF-23) and Klotho are secretory proteins that regulate mineral-ion metabolism. Fgf-23(-/-) or Klotho(-/-) knockout mice exhibit several pathophysiological processes consistent with premature aging including severe atrophy of tissues. We show that the signal transduction pathways initiated by FGF-23-Klotho prevent tissue atrophy by stimulating proliferation and preventing apoptosis caused by excessive systemic vitamin D. Because serum levels of active vitamin D are greatly increased upon genetic ablation of Fgf-23 or Klotho, we find that these molecules have a dual role in suppression of apoptotic actions of vitamin D through both negative regulation of 1alpha-hydroxylase expression and phosphoinositide-3 kinase-dependent inhibition of caspase activity. These data provide new insights into the physiological roles of FGF-23 and Klotho.  相似文献   

17.
Caspase activation and apoptotic volume decrease are fundamental features of programmed cell death; however, the relationship between these components is not well understood. Here we provide biochemical and genetic evidence for the differential involvement of initiator caspases in the apoptotic volume decrease during both intrinsic and extrinsic activation of apoptosis. Apoptosis induction in Jurkat T lymphocytes by Fas receptor engagement (intrinsic) or ultraviolet (UV)-C radiation (extrinsic) triggered the loss of cell volume, which was restricted to cells with diminished intracellular K(+) ions. These characteristics kinetically coincided with the proteolytic processing and activation of both initiator and effector caspases. Although the polycaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone completely inhibited the Fas-mediated apoptotic volume decrease and K(+) efflux, it was much less effective in preventing these processes during UV-induced cell death under conditions whereby caspase activities and DNA degradation were blocked. To define the roles of specific initiator caspases, we utilized Jurkat cells genetically deficient in caspase-8 or stably transfected with a dominant-negative mutant of caspase-9. The results show that the activation of caspase-8, but not caspase-9, is necessary for Fas-induced apoptosis. Conversely, caspase-9, but not caspase-8, is important for UV-mediated shrunken morphology and apoptosis progression. Together, these findings indicate that cell shrinkage and K(+) efflux during apoptosis are tightly coupled, but are differentially regulated by either caspase-8 or caspase-9 depending on specific pathways of cell death.  相似文献   

18.
19.
Apoptotic cell death in mammalian models is frequently associated with cell shrinkage. Inhibition of apoptotic volume decrease (AVD) is cytoprotective, suggesting that cell shrinkage is an important early event in apoptosis. In salmonid hepatoma and gill cells staurosporine induced apoptosis, as assessed by activation of effector caspases, nuclear condensation, and a decrease of mitochondrial membrane potential (MMP), and these changes were accompanied by cell shrinkage. The Cl transport inhibitor DIDS and the K+ channel inhibitor quinidine prevented AVD, but only DIDS inhibited apoptosis. Other Cl flux inhibitors, as well as a pan-caspase inhibitor, did not prevent cell shrinkage, but still prevented caspase activation. Furthermore, regulatory volume decrease (RVD) under hypotonic conditions was not facilitated, but diminished in apoptotic cells. Since all transport inhibitors used blocked RVD, but only DIDS and quinidine inhibited AVD, the ion transporters involved in both processes are apparently not identical. In addition, our data indicate that inhibition of Cl fluxes rather than blocking cell shrinkage or K+ fluxes is important for preventing apoptosis. In line with this, inhibition of MAP kinases reduced RVD and not AVD, but still diminished caspase activation. Finally, we observed that MAP kinases were activated upon staurosporine treatment and that at least activation of ERK was prevented when AVD was inhibited.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号