首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Cation-pi interactions play an important role to the stability of protein structures. In our earlier work, we have analyzed the influence and energetic contribution of cation-pi interactions in three-dimensional structures of membrane proteins. In this work, we investigate the characteristic features of residues that are involved in cation-pi interactions. We have computed several parameters, such as surrounding hydrophobicity, number of long-range contacts, conservation score and normalized B-factor for all these residues and identified their location, whether in the membrane or at surface. We found that the cation-pi interactions are mainly formed by long-range interactions. The cationic residues involved in cation-pi interactions have higher surrounding hydrophobicity than their average values in the whole dataset and an opposite trend is observed for aromatic residues. In transmembrane helical proteins, except Phe, all other residues that are responsible for cation-pi interactions are highly conserved with other related protein sequences whereas in transmembrane strand proteins, an appreciable conservation is observed only for Arg. The analysis on the flexibility of residues reveals that the cation-pi interaction forming residues are more stable than other residues. The results obtained in the present study would be helpful to understand the role of cation-pi interactions in the structure and folding of membrane proteins.  相似文献   

2.
Anbarasu A  Anand S  Rao S 《Bio Systems》2007,90(3):792-801
We have investigated the roles played by C-H...O=C interactions in RNA binding proteins. There was an average of 78 CH...O=C interactions per protein and also there was an average of one significant CH...O=C interactions for every 6 residues in the 59 RNA binding proteins studied. Main chain-Main chain (MM) CH...O=C interactions are the predominant type of interactions in RNA binding proteins. The donor atom contribution to CH...O=C interactions was mainly from aliphatic residues. The acceptor atom contribution for MM CH...O=C interactions was mainly from Val, Phe, Leu, Ile, Arg and Ala. The secondary structure preference analysis of CH...O=C interacting residues showed that, Arg, Gln, Glu and Tyr preferred to be in helix, while Ala, Asp, Cys, Gly, Ile, Leu, Lys, Met, Phe, Trp and Val preferred to be in strand conformation. Most of the CH...O=C interacting polar amino acid residues were solvent exposed while, majority of the CH...O=C interacting non polar residues were excluded from the solvent. Long and medium-range CH...O=C interactions are the predominant type of interactions in RNA binding proteins. More than 50% of CH...O=C interacting residues had a higher conservation score. Significant percentage of CH...O=C interacting residues had one or more stabilization centers. Sixty-six percent of the theoretically predicted stabilizing residues were also involved in CH...O=C interactions and hence these residues may also contribute additional stability to RNA binding proteins.  相似文献   

3.
The functional importance of protein-protein interactions indicates that there should be strong evolutionary constraint on their interaction interfaces. However, binding interfaces are frequently affected by amino acid replacements. Change due to coevolution within interfaces can contribute to variability but is not ubiquitous. An alternative explanation for the ability of surfaces to accept replacements may be that many residues can be changed without affecting the interaction. Candidates for these types of residues are those that make interchain interaction only through the protein main chain, β-carbon, or associated hydrogen atoms. Since almost all residues have these atoms, we hypothesize that this subset of interface residues may be more easily substituted than those that make interactions through other atoms. We term such interactions "residue type independent." Investigating this hypothesis, we find that nearly a quarter of residues in protein interaction interfaces make exclusively interchain residue-type-independent contacts. These residues are less structurally constrained and less conserved than residues making residue-type-specific interactions. We propose that residue-type-independent interactions allow substitutions in binding interfaces while the specificity of binding is maintained.  相似文献   

4.
In theory, a polypeptide chain can adopt a vast number of conformations, each corresponding to a set of backbone rotation angles. Many of these conformations are excluded due to steric overlaps. Ramachandran and coworkers were the first to look into this problem by plotting backbone dihedral angles in a two-dimensional plot. The conformational space in the Ramachandran map is further refined by considering the energetic contributions of various non-bonded interactions. Alternatively, the conformation adopted by a polypeptide chain may also be examined by investigating interactions between the residues. Since the Ramachandran map essentially focuses on local interactions (residues closer in sequence), out of interest, we have analyzed the dihedral angle preferences of residues that make non-local interactions (residues far away in sequence and closer in space) in the folded structures of proteins. The non-local interactions have been grouped into different types such as hydrogen bond, van der Waals interactions between hydrophobic groups, ion pairs (salt bridges), and ππ-stacking interactions. The results show the propensity of amino acid residues in proteins forming local and non-local interactions. Our results point to the vital role of different types of non-local interactions and their effect on dihedral angles in forming secondary and tertiary structural elements to adopt their native fold.  相似文献   

5.
Li X  Liang J 《Proteins》2005,60(1):46-65
Characterizing multibody interactions of hydrophobic, polar, and ionizable residues in protein is important for understanding the stability of protein structures. We introduce a geometric model for quantifying 3-body interactions in native proteins. With this model, empirical propensity values for many types of 3-body interactions can be reliably estimated from a database of native protein structures, despite the overwhelming presence of pairwise contacts. In addition, we define a nonadditive coefficient that characterizes cooperativity and anticooperativity of residue interactions in native proteins by measuring the deviation of 3-body interactions from 3 independent pairwise interactions. It compares the 3-body propensity value from what would be expected if only pairwise interactions were considered, and highlights the distinction of propensity and cooperativity of 3-body interaction. Based on the geometric model, and what can be inferred from statistical analysis of such a model, we find that hydrophobic interactions and hydrogen-bonding interactions make nonadditive contributions to protein stability, but the nonadditive nature depends on whether such interactions are located in the protein interior or on the protein surface. When located in the interior, many hydrophobic interactions such as those involving alkyl residues are anticooperative. Salt-bridge and regular hydrogen-bonding interactions, such as those involving ionizable residues and polar residues, are cooperative. When located on the protein surface, these salt-bridge and regular hydrogen-bonding interactions are anticooperative, and hydrophobic interactions involving alkyl residues become cooperative. We show with examples that incorporating 3-body interactions improves discrimination of protein native structures against decoy conformations. In addition, analysis of cooperative 3-body interaction may reveal spatial motifs that can suggest specific protein functions.  相似文献   

6.
Cation-pi interactions play an important role in the stability of protein structures. In this work, we have analyzed the influence of cation-pi interactions in DNA binding proteins. We observed cation-pi interactions in 45 out of 62 DNA binding proteins and there is no significant correlation between the number of amino acid residues and number of cation-pi interactions. These interactions are mainly formed by long-range contacts, and the role of short and medium-range contacts is minimal. The preference of Arg is higher than Lys to form cation-pi interactions. The pair-wise cation-pi interaction energy between aromatic and positively charged residues shows that Arg-Tyr energy is the strongest among the possible six pairs. The structural analysis of cation-pi interaction forming residues shows that Lys, Trp, and Tyr prefer to be in the binding site of protein-DNA complexes. Further, the accessible surface areas of cation-pi interaction forming cationic residues are significantly less than that of other residues. The preference of cation-pi interaction forming residues in different secondary structures shows that Lys prefers to be in strand and Phe prefers to be in turn regions. The results obtained in the present study will be useful in understanding the contribution of cation-pi interactions to the stability and specificity of protein-DNA complexes.  相似文献   

7.
Anbarasu A  Anand S  Mathew L  Rao S 《Cytokine》2006,35(5-6):263-269
The roles played by the non-covalent interactions have been investigated for a set of six TNF proteins and nine Interleukins. The stabilizing residues have been identified by a consensus approach using the concepts of available surface area, medium and long-range interactions and conservation of amino acid residues. The cation-pi interactions have been computed based on a geometric approach such as distance and energy criteria. We identified an average of 1 energetically significant cation-pi interactions in every 94 residues in TNF proteins and 1 in every 62 residues in Interleukins. In TNF proteins, the cationic groups Lys preferred to be in helix while Arg preferred to be in strand regions while in Interleukins the Arg residues preferred to be in helix and Lys preferred to be in strand regions. From the available surface area calculations, we found that, almost all the cation and pi residues in TNF proteins and Interleukins were either in buried or partially buried regions and none of them in the exposed regions. Medium and long-range interactions were predominant in both TNF proteins and Interleukins. It was observed that the percentage of stabilizing centers were more in TNF proteins as compared to the Interleukins, while the percentage of conserved residues were more in Interleukins than in TNF proteins. In the stabilizing residues Lys was observed to be a stabilizing residue in both TNF proteins and Interleukins. Among the aromatic group, Phe was seen to be a stabilizing residue in both TNF and Interleukins. We suggest that this study on the computation of cation-pi interactions in TNF proteins and Interleukins would be very helpful in further understanding the structure, stability and functional similarity of these proteins.  相似文献   

8.
We have investigated the roles played by C-Hcdots, three dots, centeredpi interactions in RNA binding proteins. There was an average of 55 C-Hcdots, three dots, centeredpi interactions per protein and also there was an average of one significant C-Hcdots, three dots, centeredpi interaction for every nine residues in the 59 RNA binding proteins studied. Main-chain to side-chain C-Hcdots, three dots, centeredpi interactions is the predominant type of interactions in RNA binding proteins. The donor atom contribution to C-Hcdots, three dots, centeredpi interactions was mainly from Phe, Tyr, Trp, Pro, Gly, Lys, His and Ala residues. The acceptor atom contribution to main-chain to side-chain C-Hcdots, three dots, centeredpi and side-chain to side-chain C-Hcdots, three dots, centeredpi interactions was mainly from Phe and Tyr residues. On the contrary, the acceptor atoms of Trp residues contributed to all the four types of C-Hcdots, three dots, centeredpi interactions. Also, Trp contributed both donor and acceptor atoms in main-chain to side-chain, main-chain to side-chain five-member aromatic ring and side-chain to side-chain C-Hcdots, three dots, centeredpi interactions. The secondary structure preference analysis of C-Hcdots, three dots, centeredpi interacting residues showed that, Arg, Gln, Glu, His, Ile, Leu, Lys, Met, Phe and Tyr preferred to be in helix, while Ala, Asp, Cys, Gly, Trp and Val preferred to be in strand conformation. Long-range C-Hcdots, three dots, centeredpi interactions are the predominant type of interactions in RNA binding proteins. More than 50% of C-Hcdots, three dots, centeredpi interacting residues had a higher conservation score. Significant percentage of C-Hcdots, three dots, centeredpi interacting residues had one or more stabilization centers. Seven percent of the theoretically predicted stabilizing residues were also involved in C-Hcdots, three dots, centeredpi interactions and hence these residues may also contribute additional stability to RNA binding proteins.  相似文献   

9.
RNA binding proteins play significant roles in many bio-macromolecular systems. Aromatic amino acid residues are vital for several biological functions. In the present work, the influences of π–π interactions in RNA binding proteins are analyzed. There are a total of 3,396 π-residues in RNA binding proteins out of which 1,547, 1,241, and 608 are phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), respectively. Among these 945, 634, and 356 Phe, Tyr, and Trp residues, respectively, are involved in π–π interactions. The observations indicate that majority of the aromatic residues in RNA binding proteins are involved in π–π interactions. Side chain–side chain π–π interactions are the predominant type of interactions in RNA binding proteins. These π–π interactions stabilize the core regions within RNA binding proteins. π–π interacting residues are evolutionary conserved. Residue-wise analysis indicates that π–π interacting residues have higher long-range contacts and hence they are important in the global conformational stability of these proteins.  相似文献   

10.
Cation–π interaction is a non-covalent binding force that plays a significant role in protein stability and drug–receptor interactions. In this work, we have investigated the structural role of cation–π interactions in sugar-binding proteins (SBPs). We observed 212 cation–π interactions in 53 proteins out of 59 SBPs in dataset. There is an average one energetically significant cation–π interaction for every 66 residues in SBPs. In addition, Arg is highly preferred to form cation–π interactions, and the average energy of Arg-Trp is high among six pairs. Long-range interactions are predominant in the analyzed cation–π interactions. Comparatively, all interaction pairs favor to accommodate in strand conformations. The analysis of solvent accessible area indicates that most of the aromatic residues are found on buried or partially buried whereas cationic residues were found mostly on the exposed regions of protein. The cation–π interactions forming residues were found that around 43% of cation–π residues had highly conserved with the conservation score ≥6. Almost cationic and π-residues equally share in the stabilization center. Sugar-binding site analysis in available complexes showed that the frequency of Trp and Arg is high, suggesting the potential role of these two residues in the interactions between proteins and sugar molecules. Our observations in this study could help to further understand the structural stability of SBPs.  相似文献   

11.
Analysing six types of protein-protein interfaces   总被引:6,自引:0,他引:6  
Non-covalent residue side-chain interactions occur in many different types of proteins and facilitate many biological functions. Are these differences manifested in the sequence compositions and/or the residue-residue contact preferences of the interfaces? Previous studies analysed small data sets and gave contradictory answers. Here, we introduced a new data-mining method that yielded the largest high-resolution data set of interactions analysed. We introduced an information theory-based analysis method. On the basis of sequence features, we were able to differentiate six types of protein interfaces, each corresponding to a different functional or structural association between residues. Particularly, we found significant differences in amino acid composition and residue-residue preferences between interactions of residues within the same structural domain and between different domains, between permanent and transient interfaces, and between interactions associating homo-oligomers and hetero-oligomers. The differences between the six types were so substantial that, using amino acid composition alone, we could predict statistically to which of the six types of interfaces a pool of 1000 residues belongs at 63-100% accuracy. All interfaces differed significantly from the background of all residues in SWISS-PROT, from the group of surface residues, and from internal residues that were not involved in non-trivial interactions. Overall, our results suggest that the interface type could be predicted from sequence and that interface-type specific mean-field potentials may be adequate for certain applications.  相似文献   

12.
Origins and implications of the D stagger in collagen   总被引:1,自引:0,他引:1  
Although the distribution of hydrophobic residues in the α1 chain collagen sequence has a D ? 670 Å periodicity, it is dipoles formed by 100 residues occurring in pairs of unlike charge which are responsible for the 1D stagger between molecules. Sheet models based on the Hodge-Petruska model for the axially projected collagen structure require interactions specifying 1D and 4D staggers. We found no evidence for interactions specifying a strong 4D stagger and, therefore, favour the Smith microfibril model which is specified by 1D stagger interactions alone. Two hydroxylysine residues, 234 residues apart, may form a covalent cross-link stabilising the 1D stagger. Gene duplication does not appear to be responsible for the periodicity in the sequence.  相似文献   

13.
Allosteric interactions between residues that are spatially apart and well separated in sequence are important in the function of multimeric proteins as well as single-domain proteins. This observation suggests that, among the residues that are involved in long-range communications, mutation at one site should affect interactions at a distant site. By adopting a sequence-based approach, we present an automated approach that uses a generalization of the familiar sequence entropy in conjunction with a coupled two-way clustering algorithm, to predict the network of interactions that trigger allosteric interactions in proteins. We use the method to identify the subset of dynamically important residues in three families, namely, the small PDZ family, G protein-coupled receptors (GPCR), and the Lectins, which are cell-adhesion receptors that mediate the tethering and rolling of leukocytes on inflamed endothelium. For the PDZ and GPCR families, our procedure predicts, in agreement with previous studies, a network containing a small number of residues that are involved in their function. Application to the Lectin family reveals a network of residues interspersed throughout the C-terminal end of the structure that are responsible for binding to ligands. Based on our results and previous studies, we propose that functional robustness requires that only a small subset of distantly connected residues be involved in transmitting allosteric signals in proteins.  相似文献   

14.
Protein–protein interactions (PPI) are crucial for the establishment of life. However, its basic principles are still elusive and the recognition process is yet to be understood. It is important to look at the biomolecular structural space as a whole, in order to understand the principles behind conformation–function relationships. Since the application of an alanine scanning mutagenesis (ASM) study to the growth hormone it was demonstrated that only a small subset of residues at a protein–protein interface is essential for binding — the hot-spots (HS). Aromatic residues are some of the most typical HS at a protein–protein interface. To investigate the structural role of the interfacial aromatic residues in protein–protein interactions, we performed Molecular Dynamic (MD) simulations of protein–protein complexes in a water environment and calculated a variety of physical–chemical characteristics. ASM studies of single residues and of dimers or high-order clusters were performed to check for cooperativity within aromatic residues. Major differences were found between the behavior of non-HS aromatic residues and HS aromatic residues that can be used to design drugs to block the critical interactions or to predict major interactions at protein–protein complexes.  相似文献   

15.
π–π Interactions play an important role in the stability of protein structures. In the present study, we have analyzed the influence of π–π interactions in eNOS and nNOS proteins. The contribution of these π–π interacting residues in sequential separation, secondary structure involvement, solvent accessibility and stabilization centers has been evaluated. π–π interactions stabilize the core regions within eNOS and nNOS proteins. π–π interacting residues are evolutionary conserved. There is a significant number of π–π interactions in spite of the lesser natural occurrences of π-residues in eNOS and nNOS proteins. In addition to π–π interactions, π residues also form π–π networks in both eNOS and nNOS proteins which might play an important role in the structural stability of these protein structures.  相似文献   

16.
Importance of long-range interactions in protein folding   总被引:2,自引:0,他引:2  
Long-range interactions play an active role in the stability of protein molecules. In this work, we have analyzed the importance of long-range interactions in different structural classes of globular proteins in terms of residue distances. We found that 85% of residues are involved in long-range contacts. The residues occurring in the range of 4-10 residues apart contribute more towards long-range contacts in all-alpha proteins while the range is 11-20 in all-beta proteins. The hydrophobic residues Cys, Ile and Val prefer the 11-20 range and all other residues prefer the 4-10 range. The residues in all-beta proteins have an average of 3-8 long-range contacts whereas the residues in other classes have 1-4 long-range contracts. Furthermore, the preference of residue pairs to the folding and stability will be discussed.  相似文献   

17.
Riemen AJ  Waters ML 《Biopolymers》2008,90(3):394-398
Study of model beta-hairpin peptides allows for better understanding of the factors involved in the formation of beta-sheet secondary structure in proteins. It is known that turn sequence, sidechain-sidechain interactions, interstrand hydrogen bonding, and beta-sheet propensity of residues are all important for beta-hairpin stability in aqueous solution. However, interactions of the sidechains of the terminal residues of hairpins are thought to contribute little to overall hairpin stability since these residues are typically frayed. Here, the authors report a stabilizing hydrophobic cluster of residues at the termini of the naturally occurring excised N-terminal beta-hairpin of Ubiquitin that folds autonomously in aqueous solution. Our data show that deletion of Met1 and Val17 from this hairpin destabilized the folded state in both aqueous solution and in aqueous-methanol solutions. These results suggest that interactions of terminal residues which are usually frayed can nonetheless contribute significantly to overall stability of beta-hairpin.  相似文献   

18.
19.
We have analyzed and compared the influence of cation-pi interactions in glycoproteins (GPs), lipid-binding proteins (LBPs) and RNA-binding proteins (RBPs) in this study. We observed that all the proteins included in the study had profound cation-pi interactions. There is an average of one energetically significant cation-pi interaction for every 71 residues in GPs, for every 58 residues in LBPs and for every 64 residues in RBPs. Long-range contacts are predominant in all the three types of proteins studied. The pair-wise cation-pi interaction energy between the positively charged and aromatic residues shows that Arg-Trp pair energy was the strongest among all six possible pairs in all the three types of proteins studied. There were considerable differences in the preference of cation-pi interacting residues to different secondary structure elements and ASA and these might contribute to differences in biochemical functions of GPs, LBPs and RBPs. It was interesting to note that all the five residues involved in cation-pi interactions were found to have stabilization centers in GPs, LBPs and RBPs. Majority of the cation-pi interacting residues investigated in the present study had a conservation score of 6, the cutoff value used to identify the stabilizing residues. A small percentage of cation-pi interacting residues were also present as stabilizing residues. The cation-pi interaction-forming residues play an important role in the structural stability of in GPs, LBPs and RBPs. The results obtained in this study will be helpful in further understanding the stability, specificity and differences in the biochemical functions of GPs, LBPs and RBPs.  相似文献   

20.
Protein structures are stabilized by both local and long range interactions. In this work, we analyze the residue-residue contacts and the role of medium- and long-range interactions in globular proteins belonging to different structural classes. The results show that while medium range interactions predominate in all-alpha class proteins, long-range interactions predominate in all-beta class. Based on this, we analyze the performance of several structure prediction methods in different structural classes of globular proteins and found that all the methods predict the secondary structures of all-alpha proteins more accurately than other classes. Also, we observed that the residues occurring in the range of 21-30 residues apart contributes more towards long-range contacts and about 85% of residues are involved in long-range contacts. Further, the preference of residue pairs to the folding and stability of globular proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号