首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract.  1. The habitat heterogeneity hypothesis states that the more complex the habitat, the higher the species richness. The present study analyzes the effect of local factors on regional spider ( Araneidae and Thomisidae ) richness. The main objective is to disentangle the relative importance of habitat structure and other environmental variables.
2. Fifteen territorial units of 1 km2 were sampled to obtain reliable and comparable inventories of the two spider families. Richness values were modelled using general regression models and a set of climate, topographic and vegetation structure variables. Pure and joint effects were computed via variation partitioning.
3. The results highlight the great importance of vegetation complexity, especially of grass and sub-shrub cover, in determining spider species richness.
4. The maximum temperature is the only climate variable significantly related to species richness, although its effect is combined with that of spatial and vegetation structure variables.
5. These results support the habitat heterogeneity hypothesis, and highlight the importance of taking vegetation complexity into account when managing habitats and where spider conservation is desired.  相似文献   

3.
Aim To establish the relationship between coastal dune vegetation and its pollen representation as an aid to interpret Holocene vegetation dynamics and environmental changes from pollen assemblages. Location The study area is situated on the temperate Atlantic coast of south Buenos Aires Province, Argentina (c. 39° S and 61°20′ W). Methods The vegetation of the active dune area adjacent to the beach was described on the basis of its floristic composition from 25 plots. Classification of the vegetation into distinct zones was carried out by cluster analysis. Surface samples were collected from each vegetation stand and analysed for their pollen composition. Pollen percentage data were analysed using principal components analysis in order to investigate the degree to which the different vegetation units can be distinguished by their pollen spectra. Pollen–vegetation relationships for selected taxa were explored using simple scatter plots and indices of association, under‐ and over‐representation. Indices of floristic diversity and palynological richness were used to assess the representation of the vegetation in the pollen spectra. Results and conclusions Five vegetation zones are defined on the basis of species composition and their quantitative variation: back shore, mobile dunes, slacks, semi‐fixed and fixed dunes. Pollen assemblages from back shore, mobile dunes and slacks are clearly differentiated from semi‐fixed and fixed dunes. Pollen assemblages differ considerably from the associated vegetation composition. Major discrepancies are caused by large differences in pollen and vegetation proportion of Hyalis argentea and Discaria americana. There is a considerable proportion of non‐local pollen in every spectrum. Pollen representation in the coastal dunes at Monte Hermoso is influenced by differences in pollen production, dispersal and preservation of individual taxa as well as by the spatial distribution of the vegetation, the topography of the dune system and the wind pattern. The pollen–vegetation relationship established in this study has important implication for understanding and interpreting fossil pollen records from coastal dune environments.  相似文献   

4.
5.
Aim Geographic variation in the species richness of birds has been shown to be strongly associated with annual water and energy levels (actual evapotranspiration, AET) at the global scale. However, the gradient in eastern North America appears to be anomalous, because richness is greatest around the Great Lakes, whereas AET is highest in the south‐eastern US. Here I examine if birds may be responding to vegetation produced during the breeding season rather than to annual production. Location North America east of longitude 98° W. Methods The bird richness pattern was examined using climatic variables, remotely sensed estimates of annual and seasonal plant biomass, and time since areas were exposed by the retreating Laurentide ice sheet from 20,000 to 6000 yr bp . Results Average summer GVI (Global Vegetation Index, derived from NDVI) was found to be positively linearly associated with richness, explaining 82% of the variance, whereas the relationships between richness and annual measures of both AET and GVI were curvilinear. The pattern of retreat of the Laurentide ice sheet explained an additional 6% of the variance in richness, consistent with a previous analysis of Canadian birds. Main conclusions In eastern North America, a seasonal variable associated with plant production explains the diversity gradient rather than the annual measures, but it does not undermine a general conclusion that bird diversity is closely linked with plant biomass. Further, both contemporary and historical factors appear to influence the gradient, and an association between bird richness and the geographic pattern of glacial retreat is detectable in both climatic and plant‐biomass models of bird diversity.  相似文献   

6.
Determinants of avian species richness at different spatial scales   总被引:9,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

7.
In this paper a multivariate linear regression model is proposed for predicting and mapping regional species richness in areas below the timberline according to environmental variables. The data used in setting up the model were derived from a floristic inventory. Using a stepwise regression technique, five environmental variables were found to explain 48.9% of the variability in the total number of plant species: namely temperature range, proximity to a big river or lake, threshold of minimum annual precipitation, amount of calcareous rock outcrops and number of soil types. A considerable part of the unexplained variability is thought to have been influenced by variations in the quality of the botanical inventory. These results show the importance of systematic floristic sampling in addition to conventional inventories when using floristic data as a basis in nature conservation. Nevertheless it is still possible to interpret the resulting diversity patterns ecologically. Regional species richness in Switzerland appears to be a function of: (i) environmental heterogeneity; (ii) threshold values of minimum precipitation; and (iii) presence of calcareous rock outcrops. According to similar studies, environmental heterogeneity was the strongest determinant of total species richness. In contrast to some studies, high productivity decreased the number of species. Furthermore, the implications of this work for climate change scenarios are discussed.  相似文献   

8.
基于物种的大尺度生物多样性热点研究方法   总被引:2,自引:1,他引:2  
生物多样性热点是建立保护区、制定保护决策的依据,是生物保护研究的热点问题之一。基于物种的研究方法是大尺度陆地生物多样性热点的主要研究方法,但数据的缺乏限制了直接根据物种丰富度确定热点的方法,因此研究中经常采用其他方法间接的反映物种情况,介绍了4种主要的基于物种的替代方法:指示种、高级分类单元、环境模型和景观异质性,详细阐述了各种方法存在的利弊,并从数据的可获取性、操作的便捷性和对物种特征的反映3个方面对各种方法进行了评价。任何单一的方法都无法准确反映出生物多样性热点的真实分布。合适的研究方法是权衡研究目的、时间和资金的结果,建议选择优势互补的多种方法。  相似文献   

9.
Aim To determine the empirical relationships between species richness and spatial turnover in species composition across spatial scales. These have remained little explored despite the fact that such relationships are fundamental to understanding spatial diversity patterns. Location South‐east Scotland. Methods Defining local species richness simply as the total number of species at a finer resolution than regional species richness and spatial turnover as turnover in species identity between any two or more areas, we determined the empirical relationships between all three, and the influence of spatial scale upon them, using data on breeding bird distributions. We estimated spatial turnover using a measure independent of species richness gradients, a fundamental feature which has been neglected in theoretical studies. Results Local species richness and spatial turnover exhibited a negative relationship, which became stronger as larger neighbourhood sizes were considered in estimating the latter. Spatial turnover and regional species richness did not show any significant relationship, suggesting that spatial species replacement occurs independently of the size of the regional species pool. Local and regional species richness only showed the expected positive relationship when the size of the local scale was relatively large in relation to the regional scale. Conclusions Explanations for the relationships between spatial turnover and local and regional species richness can be found in the spatial patterns of species commonality, gain and loss between areas.  相似文献   

10.
11.
Aim The aim of our study was to reveal relationships between richness patterns of native vs. alien plant species and spatial heterogeneity across varying landscape patterns at a regional scale. Location The study was carried out in the administrative district of Dessau (Germany), covering around 4000 km2. Methods Data on plant distribution of the German vascular flora available in grid cells covering 5′ longitude and 3′ latitude (c. 32 km2) were divided into three status groups: native plants, archaeophytes (pre 1500 AD aliens) and neophytes (post 1500 AD aliens). Land use and abiotic data layers were intersected with 125 grid cells comprising the selected area. Using novel landscape ecological methods, we calculated 38 indices of landscape composition and configuration for each grid cell. Principal components analysis (PCA) with a set of 29 selected, low correlated landscape indices was followed by multiple linear regression analysis. Results PCA reduced 29 indices to eight principal components (PCs) that explained 80% cumulative variance. Multiple linear regression analysis was highly significant and explained 41% to 60% variance in plant species distribution (adjusted R2) with three significant PCs (tested for spatial autocorrelation) expressing moderate to high disturbance levels and high spatial heterogeneity. Comparing the significance of the PCs for the species groups, native plant species richness is most strongly associated with riverine ecosystems, followed by urban ecosystems, and then small‐scale rural ecosystems. Archaeophyte and neophyte richness are most strongly associated with urban ecosystems, followed by small‐scale rural ecosystems and riverine ecosystems for archaeophytes, and riverine ecosystems and small‐scale rural ecosystems for neophytes. Main conclusions Our overall results suggest that species richness of native and alien plants increases with moderate levels of natural and/or anthropogenic disturbances, coupled with high levels of habitat and structural heterogeneity in urban, riverine, and small‐scale rural ecosystems. Despite differences in the order of relevance of PCs for the three plant groups, we conclude that at the regional scale species richness patterns of native plants as well as alien plants are promoted by similar factors.  相似文献   

12.
Abstract

Both local and regional predictors play a role in determining plant community structure and composition. Climate, soil features as well as different local history and management affect forest understorey and tree species composition, but to date their specific role is relatively unknown. Few studies have addressed the importance of these predictors, especially in the Mediterranean area, where environmental conditions and human impacts have generated heterogeneous forest communities. In this study, the relationships between environmental variables and species richness of different groups of vascular plants (vascular species, woody species and open habitat species) and bryophytes were investigated in Tuscan forests. A total of 37 environmental variables were used by generalised linear model fitting in order to find parsimonious sub-sets of environmental factors (predictors) that are able to explain species diversity patterns at the local scale. Moreover, the role of regional and local variable groups on species richness of the considered plant groups was estimated by using the variance partitioning approach. We found that local variables, such as forest management and structure, explained more variance than regional variables for total species richness, open habitat species richness and bryophyte species richness. On the other hand, regional variables (such as elevation) played a central role for woody species richness.  相似文献   

13.
Predictable geographic patterns in the distribution of species richness, especially the latitudinal gradient, are intriguing because they suggest that if we knew what the controlling factors were we could predict species richness where empirical data is lacking (e.g. tropics). Based on analyses of the macro-scale distribution of woody plant species richness in Southern Africa, one controlling factor appears to be climate-based water-energy dynamics. Using the regression models of climate's relationship to species richness in Southern Africa, I was able to describe an Interim General Model (IGM) and to predict first-order macro-scale geographic variations in woody plant species richness for the continent of Africa, as well as elsewhere in the world—exemplified using South America, the United States and China.
In all cases, the geographic pattern of variation in species richness is in accord with geographic variations in vegetation (visual comparison with vegetation maps) and net primary productivity. What validation was possible (Africa and U.S.A.) suggests that the IGM provides 'reasonable' estimates for actual woody plant species richness where species richness is in relative equilibrium with climate. Areas of over- or under-prediction support the contention of earlier workers that edaphic, topographic, historical, and dispersal factors need to be considered in a more complete explanation for spatio-temporal variations in species richness.
In addition to providing a means for systematically estimating woody plant species richness where present-day empirical data is lacking, the Interim General Model may prove useful for modelling the effects of climate change (past/future) on species richness (and, by association, the vegetation).  相似文献   

14.
Aim Land use and climate are two major components of global environmental change but our understanding of their simultaneous and interactive effects upon biodiversity is still limited. Here, we investigated the relationship between the species richness of neophytes, i.e. non‐native vascular plants introduced after 1500 AD, and environmental covariates to draw implications for future dynamics under land‐use and climate change. Location Switzerland, Central Europe. Methods The distribution of vascular plants was derived from a systematic national grid of 1 km2 quadrates (n = 456; Swiss Biodiversity Monitoring programme) including 1761 species, 122 of which were neophytes. Generalized linear models (GLMs) were used to correlate neophyte species richness with environmental covariates. The impact of land‐use and climate change was thereafter evaluated by projections for the years 2020 and 2050 using scenarios of moderate and strong changes for climate warming (IPCC) and urban sprawl (NRP 54). Results Mean annual temperature and the amount of urban areas explained neophyte species richness best, with a high predictive power of the corresponding model (cross‐validated D2 = 0.816). Climate warming had a stronger impact on the potential increase in the mean neophyte species richness (up to 191% increase by 2050) than ongoing urban sprawl (up to 10% increase) independently from variable interactions and model extrapolations to non‐analogue environments. Main conclusions In contrast to other vascular plants, the prediction of neophyte species richness at the landscape scale in Switzerland requires few variables only, and regions of highest species richness of the two groups do not coincide. The neophyte species richness is basically driven by climatic (temperature) conditions, and urban areas additionally modulate small‐scale differences upon this coarse‐scale pattern. According to the projections climate warming will contribute to the future increase in neophyte species richness much more than ongoing urbanization, but the gain in new neophyte species will be highest in urban regions.  相似文献   

15.
Aim Applying water‐energy dynamics and heterogeneity theory to explain species richness via remote sensing could allow for the regional characterization and monitoring of vegetation community assemblages and their environment. We assess the relationship of multi‐temporal normalized difference vegetation index (NDVI) to plant species richness in vegetation communities. Location California, USA. Methods Sub‐regions containing species inventories for chaparral, coastal sage scrub, foothill woodland, and yellow pine forest communities were intersected with a vegetation community map and an AVHRR NDVI time series for 1990, 1991, 1992, 1995 and 1996. Principal components analysis reduced the AVHRR data to three variables representing the sum and temporal trajectories of NDVI within each community. A fourth variable representing heterogeneity was tested using the standard deviation of the first component. Quadratic forms of these variables were also tested. Species richness was analysed by stepwise regression. Results Chaparral, coastal sage scrub, and yellow pine forest had the best relationships between species richness and NDVI. Richness of chaparral was related to NDVI heterogeneity and spring greenness (r2 varied between 0.26 and 0.62 depending on year of NDVI data). Richness of coastal sage scrub was nonlinearly related to annual NDVI and heterogeneity (r2 0.63–0.81), with peak richness at intermediate values. Foothill woodland richness was related to heterogeneity in a monotonic curvilinear fashion (r2 0.28–0.35). Yellow pine forest richness was negatively related to spring greenness and positively related to heterogeneity (r2 0.40–0.46). Main Conclusions While NDVI's relationship to species richness varied, the selection of NDVI variables was generally consistent across years and indicated that spatial variability in NDVI may reflect important patterns in water‐energy use that affect plant species richness. The principal component axis that should correspond closely with annual mean NPP showed a less prominent role. We conclude that plant species richness for coarse vegetation associations can be characterized and monitored at a regional scale and over long periods of time using relatively coarse resolution NDVI data.  相似文献   

16.
17.
Aim We investigate the relationship between local and regional richness in marine fouling assemblages using an expanded and globally replicated approach by incorporating two dimensions of diversity (taxonomic and functional) and different successional stages. Location Global. Methods In eight different biogeographic regions (Australia, Brazil, Chile, England, Italy, Japan, Portugal and Sweden) 68 polyvinylchloride (PVC) panels (15 × 15 × 0.3 cm) were deployed for colonization. Communities colonizing panels were analysed by measuring percentage cover at each of four different successional ages: 2, 4, 6 and 8 months. Local richness was assessed as the average number of species and functional groups (FGs) per panel and regional richness was evaluated as the estimated (Jack2) asymptote of the sample‐accumulation curves for species and FG on experimental panels. Results We found that the shape of the relationship between local and regional richness depended on successional stage and the type of richness considered, i.e. taxonomic or functional richness. Hardly any relationship was detectable between local taxonomic richness and regional taxonomic richness at any successional stage. In contrast, the relation between local functional and regional functional richness shows a unimodal pattern of change during succession, passing through the stages ‘independent’, ‘unsaturated rising’, ‘saturated rising’ and once again ‘independent’. Main conclusions The relationship between local and regional richness, whether taxonomic or functional, frequently displays independence of the two scales, particularly in early and late phases of the successional process.  相似文献   

18.
环境因子对太白山高山植被物种组成和丰富度的影响   总被引:4,自引:0,他引:4  
任学敏  杨改河  朱雅  王小立  王得祥 《生态学报》2014,34(23):6993-7003
高山植被是一类具有重要生态和经济价值的植被类型,了解其物种组成和丰富度与环境因子的关系对于该类型植被保护、管理以及植物资源合理开发利用策略的制订具有重要指导意义。基于太白山高山植被和环境因子野外调查及室内实验数据,采用CCA排序法探索了环境因子对物种组成的影响,偏CCA计算了各环境因子对物种组成的总效应和净效应,GLM回归模型拟合了物种丰富度对环境因子的响应。结果表明,13个环境因子共解释了物种组成变异的31.7%,其中海拔、坡度、土壤碱解氮含量、全磷含量、坡向、岩石盖度、p H值、土壤厚度、有机质含量、有效磷含量和全氮含量对物种组成的净效应达显著水平(P0.05),但其作用强度依次减小。GLM拟合结果显示,物种丰富度与环境因子存在4种显著(P0.05)关系,即物种丰富度沿海拔和土壤厚度梯度单调递增,沿坡度和土壤全氮含量梯度单调递减,沿坡向、土壤p H值、碱解氮含量和全磷含量梯度呈单峰分布,与土壤有机质含量和全钾含量呈倒单峰关系。在这些显著的环境因子中,海拔、土壤碱解氮含量,p H值、有机质含量和坡向解释的物种丰富度变异量最大。  相似文献   

19.
20.
Global climate change is a major threat to biodiversity, posing increasing pressures on species to adapt in situ or shift their ranges. A protected area network is one of the main instruments to alleviate the negative impacts of climate change. Importantly, protected area networks might be expected to enhance the resilience of regional populations of species of conservation concern, resulting in slower species loss in landscapes with a significant amount of protected habitat compared to unprotected landscapes. Based on national bird atlases compiled in 1974–1989 and 2006–2010, this study examines the recent range shifts in 90 forest, mire, marshland, and Arctic mountain heath bird species of conservation concern in Finland, as well as the changes in their species richness in protected versus unprotected areas. The trends emerging from the atlas data comparisons were also related to the earlier study dealing with predictions of distributional changes for these species for the time slice of 2051–2080, developed using bioclimatic envelope models (BEMs). Our results suggest that the observed changes in bird distributions are in the same direction as the BEM‐based predictions, resulting in a decrease in species richness of mire and Arctic mountain heath species and an increase in marshland species. The patterns of changes in species richness between the two time slices are in general parallel in protected and unprotected areas. However, importantly, protected areas maintained a higher level of species richness than unprotected areas. This finding provides support for the significance and resilience provision of protected area networks in preserving species of conservation concern under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号