首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proinflammatory factors from activated T cells inhibit neurogenesis in adult animal brain and cultured human fetal neural stem cells (NSC). However, the role of inhibition of neurogenesis in human neuroinflammatory diseases is still uncertain because of the difficulty in obtaining adult NSC from patients. Recent developments in cell reprogramming suggest that NSC may be derived directly from adult fibroblasts. We generated NSC from adult human peripheral CD34+ cells by transfecting the cells with Sendai virus constructs containing Sox2, Oct3/4, c-Myc and Klf4. The derived NSC could be differentiated to glial cells and action potential firing neurons. Co-culturing NSC with activated autologous T cells or treatment with recombinant granzyme B caused inhibition of neurogenesis as indicated by decreased NSC proliferation and neuronal differentiation. Thus, we have established a unique autologous in vitro model to study the pathophysiology of neuroinflammatory diseases that has potential for usage in personalized medicine.  相似文献   

2.
Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.  相似文献   

3.
Adult neurogenesis in natural populations   总被引:2,自引:0,他引:2  
The dogma that the adult brain produces no new neurons has been overturned, but the critics are still asking, so what? Is adult neurogenesis a biologically relevant phenomenon, or is it perhaps harmful because it disrupts the existing neuronal circuitry? Considering that the phenomenon is evolutionarily conserved in all mammalian species examined to date and that its relevance has been well documented in non-mammalian species, it seems self-evident that neurogenesis in adult mammals must have a role. In birds, it has been established that neurogenesis varies dramatically with seasonal changes in song production. In chickadees, the learning behaviour related to finding stored food is also correlated with seasonal adult neurogenesis. Such studies are still nonexistent in mammals, but the related evidence suggests that neurogenesis does vary seasonally in hamsters and shows sexual differences in meadow voles. To promote studies on natural populations asking fundamental questions of the purpose and function of neurogenesis, we organized a Workshop on "Hippocampal Neurogenesis in Natural Populations" in Toronto in May 2000. The Workshop highlighted recent discoveries in neurogenesis from the lab, and focused on its functional consequences. The consensus at the Workshop was that demonstration of a role for neurogenesis in natural behaviours will ultimately be essential if we are to understand the purpose and function of neurogenesis in humans.  相似文献   

4.
Essentially, three neuroectodermal-derived cell types make up the complex architecture of the adult CNS: neurons, astrocytes and oligodendrocytes. These elements are endowed with remarkable morphological, molecular and functional heterogeneity that reaches its maximal expression during development when stem/progenitor cells undergo progressive changes that drive them to a fully differentiated state. During this period the transient expression of molecular markers hampers precise identification of cell categories, even in neuronal and glial domains. These issues of developmental biology are recapitulated partially during the neurogenic processes that persist in discrete regions of the adult brain. The recent hypothesis that adult neural stem cells (NSCs) show a glial identity and derive directly from radial glia raises questions concerning the neuronal-glial relationships during pre- and post-natal brain development. The fact that NSCs isolated in vitro differentiate mainly into astrocytes, whereas in vivo they produce mainly neurons highlights the importance of epigenetic signals in the neurogenic niches, where glial cells and neurons exert mutual influences. Unravelling the mechanisms that underlie NSC plasticity in vivo and in vitro is crucial to understanding adult neurogenesis and exploiting this physiological process for brain repair. In this review we address the issues of neuronal/glial cell identity and neuronal-glial interactions in the context of NSC biology and NSC-driven neurogenesis during development and adulthood in vivo, focusing mainly on the CNS. We also discuss the peculiarities of neuronal-glial relationships for NSCs and their progeny in the context of in vitro systems.  相似文献   

5.
Neural Stem Cells (NSC) are present in the developing and adult CNS. In both the embryonic and adult neurogenic regions, beta1 integrins may act as sensors for the changing extracellular matrix. Here we highlight the integrative functions that beta1 integrins may play in the "niche" by regulating NSC growth factor responsiveness in a timely and spatially controlled manner. beta1 integrins may provide NSC with the capacity to react to a dynamic "niche", and to respond adequately by either remaining as stem cells or by differentiating and migrating away to shape the developing cortex.  相似文献   

6.
Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC) or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS) and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.  相似文献   

7.
Neurogenesis in the adult central nervous system   总被引:8,自引:0,他引:8  
Contrary to the long-held dogma, neurogenesis occurs throughout adulthood, and neural stem cells reside in the adult central nervous system (CNS) in mammals. The developmental process of the brain may thus never end, and the brain may be amenable to repair. Neurogenesis is modulated in a wide variety of physiological and pathological conditions, and is involved in processes such as learning and memory and depression. However, the relative contribution of newly generated neuronal cells to these processes, as well as to CNS plasticity, remains to be determined. Thus, not only neurogenesis contributes to reshaping the adult brain, it will ultimately lead us to redefine our knowledge and understanding of the nervous system.  相似文献   

8.
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.  相似文献   

9.
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.  相似文献   

10.
Neural stem cell (NSC) activity and adult neurogenesis are physiologically relevant regulators of adult brain structure, function and repair. Given these roles, the NSC impairments observed in a wide range of neurodegenerative and psychiatric conditions likely factor into the overall cognitive dysfunction in these conditions. We investigated NSC regulation in the context of Alzheimer's disease (AD) using the well‐characterised triple transgenic (3xTg) model of AD. In this review, we describe our recent findings that link 3xTg‐AD neurogenesis impairments to AD‐associated abnormalities in brain fatty acid metabolism. Notably, we identified an accumulation of triglycerides rich in oleic acid, a mono‐unsaturated fatty acid, within the forebrain NSC niche in AD. Inhibiting the local conversion of saturated to mono‐unsaturated fatty acids within the brain was sufficient to counteract the loss of NSC activity in 3xTg‐AD mice (Hamilton et al., 2015). We place these findings within the context of recent evidence that dynamic changes in lipid metabolism occur during the transition from NSC quiescence to activation. The picture that emerges is that the critical NSC quiescence‐to‐activation decision is sensitive to the local levels of specific fatty acids and can be impaired by a disease‐associated shift in brain fatty acid balance.  相似文献   

11.
The discovery of neural stem cells (NSC) which ensure continuous neurogenesis in the adult mammalian brain, has led to a conceptual revolution in basic neuroscience and to high hopes for clinical nervous tissue repair. However, several research issues remain to address before neural stem cells can be harnessed for regenerative therapies. The presence of NSC in a nervous structure is demonstrated in vitro by primary culture of dissociated adult nervous tissue in the presence of the specific mitogens EGF and bFGF. This leads to spherical masses of proliferating cells endowed with capacities for self-renewal and, after growth factor removal, differentiation into the three characteristic cell types of nervous tissue (neurons, astrocytes, oligodendrocytes). In vivo, neurogenesis per se, i.e. production of new neurons, occurs only in a small subset of NSC-endowed structures. The production of oligodendrocytes, i.e. myelinating glial cells, is similarly restricted. Such in vivo restrictions were formally demonstrated to arise from the tissular microenvironnement, which led to the emerging concept of "neurogenic niche". In this context, major challenges now consist in identifying the nature of tissue-specific extracellular signals that determine lineage commitment of NSC progeny, understanding why NSCs display weak in vivo reactivity to lesions compared to other stem cell types in adults, and identifying the factors behind the very high resistance to tumorigenesis displayed by NSCs. Altogether, the current data offer hope for the future use of adult NSCs in regenerative therapies, provided that tissue-specific signals are identified in view of counteracting the intrinsic repression of new cell genesis and/or stimulating endogenous NSC recruitment to lesion sites.  相似文献   

12.
Neurogenesis in the adult mammalian brain   总被引:2,自引:0,他引:2  
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to obtain new results overriding the dogma that neurogenesis is impossible in the adult brain. The present review summarizes the information about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and denate gyrus, neurogenesis appears proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin, and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise very fast to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.  相似文献   

13.
14.
The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.  相似文献   

15.
Throughout life, neural stem cells (NSCs) in the adult hippocampus persistently generate new neurons that modify the neural circuitry. Adult NSCs constitute a relatively quiescent cell population but can be activated by extrinsic neurogenic stimuli. However, the molecular mechanism that controls such reversible quiescence and its physiological significance have remained unknown. Here, we show that the cyclin‐dependent kinase inhibitor p57kip2 (p57) is required for NSC quiescence. In addition, our results suggest that reduction of p57 protein in NSCs contributes to the abrogation of NSC quiescence triggered by extrinsic neurogenic stimuli such as running. Moreover, deletion of p57 in NSCs initially resulted in increased neurogenesis in young adult and aged mice. Long‐term p57 deletion, on the contrary, led to NSC exhaustion and impaired neurogenesis in aged mice. The regulation of NSC quiescence by p57 might thus have important implications for the short‐term (extrinsic stimuli‐dependent) and long‐term (age‐related) modulation of neurogenesis.  相似文献   

16.
Adult neurogenesis is dynamically regulated by a tangled web of local signals emanating from the neural stem cell (NSC) microenvironment. Both soluble and membrane-bound niche factors have been identified as determinants of adult neurogenesis, including morphogens. Here, we review our current understanding of the role and mechanisms of short-range morphogen ligands from the Wnt, Notch, Sonic hedgehog, and bone morphogenetic protein (BMP) families in the regulation of adult neurogenesis. These morphogens are ideally suited to fine-tune stem-cell behavior, progenitor expansion, and differentiation, thereby influencing all stages of the neurogenesis process. We discuss cross talk between their signaling pathways and highlight findings of embryonic development that provide a relevant context for understanding neurogenesis in the adult brain. We also review emerging examples showing that the web of morphogens is in fact tightly linked to the regulation of neurogenesis by diverse physiologic processes.Neurogenesis in the adult mammalian brain is dynamically regulated by a number of genetic and epigenetic intrinsic factors as well as by extrinsic cues (Ninkovic and Götz 2007; Ma et al. 2010; Faigle and Song 2013). Among the latter, local signals emanating from the neural stem cell (NSC) microenvironment are thought to play a prominent modulatory role. This microenvironment, often referred to as the NSC or neurogenic “niche,” is viewed as a complex entity composed of stem and precursor cells, the surrounding mature cell types, cell-to-cell interactions, the extracellular matrix, the basal lamina, and secreted factors (Doetsch 2003). The principal mature cellular constituents of the adult NSC niches are parenchymal astroglial cells, the vasculature, microglia, and ependymal cells, all of which secrete a variety of molecules that mainly control stem-cell behavior, but also influence other stages of the adult neurogenesis process (Basak and Taylor 2009; Mu et al. 2010; Ihrie and Alvarez-Buylla 2011).As opposed to the majority of adult brain regions, the subventricular zone (SVZ) and the dentate gyrus (DG) subgranular zone (SGZ) niches are instructive milieus that allow NSC proliferation while promoting the specification and differentiation of new neurons. The relevance of the SVZ and SGZ microenvironments in adult neurogenesis was first evidenced by heterotopic transplantation experiments showing that precursor cells from a neurogenic niche, such as the SVZ, differentiate into glial cells and not into neurons when grafted to nonneurogenic areas of the brain (Seidenfaden et al. 2006). In contrast, SVZ or spinal cord precursor cells generated neurons when transplanted to a neurogenic region, such as the hippocampal DG (Suhonen et al. 1996; Shihabuddin et al. 2000). Although other in vivo studies have shown that SVZ-derived precursors maintain a certain degree of region-specific potential that is not respecified on transplantation to ectopic sites (Merkle et al. 2007), most studies suggest that local cues in the neurogenic brain niches are key for neuronal differentiation to occur. On the other hand, combined transplantation of both NSCs and niche cells to nonneurogenic areas, or expression of niche factors at the site where NSCs are grafted, promotes neuronal differentiation (Lim et al. 2000, Jiao and Chen 2008). Thus, it has progressively become apparent that extrinsic signals produced by niche cells enable the adult neurogenic program to proceed.More recently, transgenic and virus-based approaches allowing cell type- and temporal-specific manipulation of gene expression in the niches have provided great insights into the identity of the extrinsic signals regulating neurogenesis in vivo and into the molecular mechanisms elicited by those signals. Several soluble and membrane-bound factors have been identified as determinants of SVZ and SGZ neurogenesis, including morphogens, growth factors, neurotrophins, and neurotransmitters. Among these determinants, morphogens are ideally suited to fine-tune the sophisticated processes of stem-cell activation, progenitor expansion, and differentiation required for proper adult neurogenesis. Morphogens are defined as signaling molecules that pattern developing tissues in a concentration-dependent manner (Ashe and Briscoe 2006; Rogers and Schier 2011). They mostly operate in long-range gradients created by synthesis and diffusion of the morphogen proteins from a source and clearance during their flux by diverse mechanisms, such as immobilization, degradation, or endocytosis. Additional molecules that act as anti- or promorphogens further refine their activity. It is important to note that, although morphogens are graded signals, the response they elicit is not graded. Small differences in the concentration of a morphogen can trigger sharp thresholds in the expression of target genes. In addition, morphogens can also act at short range. Lipidation and low-affinity interactions with extracellular matrix components confine the movement of some morphogen proteins and promote effective morphogen–receptor interactions at the cell surface. Cells exposed locally to different morphogen doses respond by adopting different fates and, in this way, a morphogen can assign positional information to cells within a structure or territory, such as a stem-cell niche, and provoke different niche responses or outputs depending on the context (Ashe and Briscoe 2006; Rogers and Schier 2011).Here, we review our current understanding of the role and mechanisms of short-range niche morphogens, including ligands from the Wnt, Notch, Sonic hedgehog, and bone morphogenetic protein (BMP) families, in the regulation of adult neurogenesis. We discuss cross talk between their signaling pathways and intersection with other signaling pathways operating in the niches. We also highlight findings and emerging principles of embryonic development that provide a relevant context for understanding the growing field of adult neurogenesis.  相似文献   

17.
Several microRNAs (miRNAs) that are either specifically enriched or highly expressed in neurons and glia have been described, but the identification of miRNAs modulating neural stem cell (NSC) biology remains elusive. In this study, we exploited high throughput miRNA expression profiling to identify candidate miRNAs enriched in NSC/early progenitors derived from the murine subventricular zone (SVZ). Then, we used lentiviral miRNA sensor vectors (LV.miRT) to monitor the activity of shortlisted miRNAs with cellular and temporal resolution during NSC differentiation, taking advantage of in vitro and in vivo models that recapitulate physiological neurogenesis and gliogenesis and using known neuronal- and glial-specific miRNAs as reference. The LV.miRT platform allowed us monitoring endogenous miRNA activity in low represented cell populations within a bulk culture or within the complexity of CNS tissue, with high sensitivity and specificity. In this way we validated and extended previous results on the neuronal-specific miR-124 and the astroglial-specific miR-23a. Importantly, we describe for the first time a cell type- and differentiation stage-specific modulation of miR-93 and miR-125b in SVZ-derived NSC cultures and in the SVZ neurogenic niche in vivo, suggesting key roles of these miRNAs in regulating NSC function.  相似文献   

18.
Neurogenesis involves generation of functional newborn neurons from neural stem cells (NSCs). Insufficient formation or accelerated degeneration of newborn neurons may contribute to the severity of motor/nonmotor symptoms of Parkinson’s disease (PD). However, the functional role of adult neurogenesis in PD is yet not explored and whether glycogen synthase kinase-3β (GSK-3β) affects multiple steps of adult neurogenesis in PD is still unknown. We investigated the possible underlying molecular mechanism of impaired adult neurogenesis associated with PD. Herein, we show that single intra-medial forebrain bundle (MFB) injection of 6-hydroxydopamine (6-OHDA) efficiently induced long-term activation of GSK-3β and reduced NSC self-renewal, proliferation, neuronal migration, and neuronal differentiation accompanied with increased astrogenesis in subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Indeed, 6-OHDA also delayed maturation of neuroblasts in the DG as witnessed by their reduced dendritic length and arborization. Using a pharmacological approach to inhibit GSK-3β activation by specific inhibitor SB216763, we show that GSK-3β inhibition enhances radial glial cells, NSC proliferation, self-renewal in the SVZ, and the subgranular zone (SGZ) in the rat PD model. Pharmacological inhibition of GSK-3β activity enhances neuroblast population in SVZ and SGZ and promotes migration of neuroblasts towards the rostral migratory stream and lesioned striatum from dorsal SVZ and lateral SVZ, respectively, in PD model. GSK-3β inhibition enhances dendritic arborization and survival of granular neurons and stimulates NSC differentiation towards the neuronal phenotype in DG of PD model. The aforementioned effects of GSK-3β involve a crosstalk between Wnt/β-catenin and Notch signaling pathways that are known to regulate NSC dynamics.  相似文献   

19.
We reported earlier that occasional neurons evolve in human cultures of pluripotent ovarian epithelial stem cells. In subsequent experiments, frequent transdifferentiation into neural stem cells (NSC) and differentiating neurons was observed in human ovarian epithelial stem cells and porcine granulosa cells after exposure to certain combinations of sex steroids. Testosterone (TS), progesterone (PG) or estradiol (E2) alone do not increase the emergence of neurons. However, a mixture of TS+PG after E2 pretreatment converted a majority of ovarian epithelial stem cells or porcine granulosa cells into NSC and differentiating neuronal cells within one to three hours. Cultured neurons manifested an interconnectivity resembling primitive neuronal pathways in culture. These converted cells expressed the cell markers SSEA-1, SSEA-4, NCAM, and Thy-1 glycoconjugates of NSC and neurons, and differentiating cells showed characteristic neuronal morphology. Emergence of NSC and neuronal cells was associated with significant cellular depletion of L-glutamic acid (glutamate), which serves as the major excitatory neurotransmitter in the vertebrate CNS and its fast removal is essential for preventing glutamate excitotoxicity. These observations suggest that certain sequential systemic treatment with common sex steroids and their mixture might be effective in the treatment or prevention of degenerative CNS disorders. The ovarian stem cell cultures readily obtainable from human ovaries regardless of the woman's age have the potential to produce NSC for autologous regenerative treatment of neurologic diseases in aging women. Finally, the proper combination of sex steroids could possibly be employed for transdifferentiation of adult bone marrow stem cells or mobilized peripheral blood cells into autologous NSC and stimulate their neuronal differentiation after homing in the CNS.  相似文献   

20.
Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号