首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found previously that human lung cancers potently induce T lymphocyte IL-10 production in vitro. To assess the impact of enhanced T cell-derived IL-10 on antitumor immunity in vivo, we utilized transgenic mice expressing IL-10 under the control of the IL-2 promoter. We have shown previously that Lewis lung carcinoma cells (3LL) have more aggressive growth potential in IL-10 transgenic mice compared with control littermates. In this study, we show that transfer of T cells from IL-10 transgenic mice to control littermates transferred the IL-10 immunosuppressive effect and led to enhanced 3LL tumor growth. In addition to changes in T cell-mediated immunity, professional APC from IL-10 transgenic mice were found to have significantly suppressed capacity to induce MHC alloreactivity, CTL responses, and IL-12 production. Tumor Ag-pulsed dendritic cells from IL-10 transgenic mice also failed to generate antitumor reactivity. These results suggest that increased levels of T cell-derived IL-10 severely impair antitumor immunity in vivo, due to defects in both T cell and APC function.  相似文献   

2.
Tumor cells treated with IL-10 were shown to have decreased, but peptide-inducible expression of MHC class I, decreased sensitivity to MHC class I-restricted CTL, and increased NK sensitivity. These findings could be explained, at least partially, by a down-regulation of TAP1/TAP2 expression. In this study, IT9302, a nanomeric peptide (AYMTMKIRN), homologous to the C-terminal of the human IL-10 sequence, was demonstrated to mimic these previously described IL-10 effects on MHC class I-related molecules and functions. We observed a dose-dependent down-regulation of MHC class I at the cell surface of melanoma cells after 24-h treatment with IT9302. The IL-10 homologue peptide also caused a dose-dependent inhibition of the IFN-gamma-mediated surface induction of MHC class I in a melanoma cell line. We demonstrated, using Western blot and flow cytometry, that IT9302 inhibits the expression of TAP1 and TAP2 proteins, but not MHC class I H chain or low molecular protein molecules. Finally, peptide-treated melanoma cells were shown to be more sensitive to lysis by NK cells in a dose-dependent way. Taken together, these results demonstrate that a small synthetic peptide derived from IL-10 can mimic the Ag presentation-related effects mediated by this cytokine in human melanomas and increase tumor sensitivity to NK cells, which can be relevant in the designing of future strategies for cancer immune therapy.  相似文献   

3.
We have previously shown that norepinephrine (NE) inhibits the in vitro generation of anti-MOPC-315 CTL activity by spleen cells from BALB/c mice rejecting a large MOPC-315 tumor as a consequence of low-dose melphalan (l -phenylalanine mustard (l -PAM)) treatment (l -PAM TuB spleen cells). Since TNF-alpha plays a key role in the generation of antitumor CTL activity in this system, we determined whether NE mediates this inhibition through inhibition of TNF-alpha production. Here, we show that NE inhibits the production of TNF-alpha protein and mRNA by l -PAM TuB spleen cells stimulated in vitro with mitomycin C-treated tumor cells. Flow cytometric analysis of intracellular expression of TNF-alpha revealed substantial NE-mediated decreases in the percentages of TNF-alpha+ cells among CD4+ and CD8+ T cells and F4/80+ activated macrophages. NE inhibition of CTL generation was largely overcome by addition of TNF-alpha to the stimulation cultures. When the beta-adrenergic antagonist propranolol was added to the stimulation cultures of l -PAM TuB spleen cells at a concentration that prevented NE-induced cAMP elevation, the NE-mediated decrease in TNF-alpha mRNA and NE-mediated inhibition of CTL generation were reversed. Collectively, these results suggest that NE inhibits antitumor CTL generation, at least in part, by inhibiting TNF-alpha synthesis through a mechanism(s) involving beta-adrenergic receptor signaling.  相似文献   

4.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

5.
Interleukin-10 (IL-10) is known to be a tolerogenic cytokine since it inhibits pro-inflammatory cytokine production and T cell stimulatory capacities of myeloid cells, such as macrophages and dendritic cells. In particular, it has a non-redundant tolerogenic role in intestinal immune homeostasis, since mice and patients with genetic defects in the IL-10/IL-10R pathway develop spontaneously colitis in the presence of a normal intestinal flora. However, IL-10 is also a growth and differentiation factor for B-cells, can promote autoantibody production and has consequently a pathogenic role in systemic lupus erythematosus. Moreover, IL-10 can promote cytotoxic T-cell (CTL) responses and this immunogenic activity might be relevant in type-1 diabetes and anti-tumor immune responses. This review summarizes these paradoxic effects of IL-10 on different types of immune responses, and proposes that different cellular sources of IL-10, in particular IL-10-secreting helper and regulatory T-cells, have different effects on B-cell and CTL responses. Based on this concept we discuss the rationales for targeting the IL-10 pathway in immune-mediated diseases and cancer.  相似文献   

6.
The immunosuppressive cytokine IL-10 is associated with poor prognosis in colon cancer. Although macrophages are involved in antitumor defenses, production of IL-10 by tumor cells may permit malignant cells escape to cell-mediated immune defenses. To investigate interactions between macrophages and tumor cells in humans, we cultured macrophages isolated from patients and tested the effect of these macrophages on the production of IL-10 by several tumor cell lines. Macrophages were isolated from pleural effusions of patients with malignancy and from noncancer control patients. We demonstrated that culture supernatants of macrophages from both sources strongly stimulated IL-10 production by the three different human colon adenocarcinoma cell lines, Colo 205, Colo 320, and HT29. Recombinant IL-6, but not IL-10, TNF-alpha, and IFN-alpha, stimulated the secretion of IL-10 by colon tumor cells. mAbs against IL-6 and IL-6R prevented the effect of macrophage culture supernatants and of rIL-6, respectively, on the production of IL-10 by the three cell lines. Cocultures of macrophages and colon cancer cells showed that these tumor cells first stimulated macrophages to produce IL-6, which was then followed by IL-6-induced IL-10 production by colon cancer cells. Finally, we showed that IL-10 gene regulation was mediated by STAT3, which was phosphorylated after the binding of IL-6 to IL-6R. This is the first demonstration that IL-6, secreted by macrophages, can induce a STAT3-mediated IL-10 production by colon tumor cells.  相似文献   

7.
We have previously shown the importance of endogenous tumor necrosis factor (TNF) production for the curative effectiveness of low-dose melphalan (L-phenylalanine mustard) for mice bearing a large MOPC-315 tumor. In the current study we demonstrate that low-dose melphalan is actually associated with enhanced expression of mRNA for TNFα in the s.c. tumor nodule. Moreover, the expression of mRNA for interferon γ (IFNγ) and interleukin-12 (IL-12; p40) is also elevated at the tumor site. However, while elevation in the expression of mRNA for TNFα and IFNγ is evident within 24 h after the chemotherapy, elevation in the expression of mRNA for IL-12(p40) is first evident 72 h after the chemotherapy. Moreover, neutralizing anti-IFNγ mAb, like neutralizing anti-TNF mAb but not neutralizing anti-IL-12 mAb, reduced the curative effectiveness of low-dose melphalan for MOPC-315 tumor bearers. Studies into the mechanism through which IFNγ mediates its antitumor effect in low-dose-melphalan-treated MOPC-315 tumor-bearing mice revealed that MOPC-315 tumor cells, which are not sensitive to the direct antitumor effects of TNF, display some sensitivity to the antiproliferative activity of high concentrations of IFNγ. However, unlike TNFα, IFNγ is unable to promote the generation of anti-MOPC-315 cytotoxic T lymphocyte activity and, in fact, exerts an inhibitory activity on CTL generation. Taken together, our studies illustrate that low-dose melphalan therapy of MOPC-315 tumor bearers is associated with the rapid elevation in the expression of mRNA for IFNγ and TNF, two cytokines which are important for the curative effectiveness of low-dose melphalan, and which mediate their antitumor effect, in part, through distinct mechanisms.  相似文献   

8.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.  相似文献   

9.
Although interleukin-10 (IL-10) is commonly regarded as an immunosuppressive cytokine, a wealth of evidence is accumulating that IL-10 also possesses some immunostimulating antitumor properties. Previous studies demonstrated that forced expression of the IL-10 gene in tumor cells could unexpectedly produce antitumor effects. In this study, we explored the tumorigenesis of EG7 cells transduced with IL-10 gene. In vivo, IL-10 gene transfer reduced tumorigenic capacity of EG7 cells and prolonged survival of the EG7 tumor-bearing mice. It was found that the cytotoxicities of cytotoxic T lymphocytes (CTL) and natural killer cells (NK cells) were enhanced. Assessment of the immune status of the animals showed prevalence of a systemic and tumor-specific Th2 response (high levels of IL-4 and IL-10). To improve the therapeutic efficacy, we combined with intratumoral injection of adenovirus-mediated lymphotactin (Ad-Lptn) into the overestablished EG7 tumor model. More significant inhibition of tumor growth were observed in EG7 tumor-bearing mice that received combined treatment with IL-10 and Lptn gene than those of mice treated with IL-10 or Lptn gene alone. The highest NK cells and CTL activity was induced in the combined therapy group, increasing the production of IL-2 and interferon-γ (IFN-γ) significantly but decreasing the expression of immune suppressive cells (CD4+Foxp3+ Treg cells and Gr1+CD11b+ MDSCs). The necrosis of tumor cells was markedly observed in the tumor tissues, accompanying with strongest expression of Mig (monokine induced by interferon-gamma) and IP-10 (interferon-inducible protein 10), weakest expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases-2 (MMP-2). In vivo, depletion analysis demonstrated that CD8+ T cells and NK cells were the predominant effector cell subset responsible for the antitumor effect of IL-10 or Lptn gene. These findings may provide a potential strategy to improve the antitumor efficacy of IL-10 and Lptn.  相似文献   

10.
We examined the hypothesis that a failure of the immune system to eradicate tumors is due to the immunosuppressive environment created by the growing tumor, which is influenced by the site of tumor growth. We demonstrated that T cell responses to a bystander Ag in mice were suppressed by a growing CT26 tumor. T cells purified from the growing tumor expressed mRNA for IL-10, TGF-beta, and Foxp3. Intracellular cytokine staining revealed a high frequency of IL-10-secreting macrophages, dendritic cells, and CD4+ and CD8+ T cells infiltrating the tumor. In contrast, T cell IFN-gamma production was weak and CD8+ CTL responses were undetectable in mice with CT26 lung metastases and weak and transient following s.c. injection of CT26 cells, but were enhanced in the presence of anti-IL-10 and anti-TGF-beta. Consistent with this, removal of CD8+ T cells abrogated CTL responses and promoted progression of the s.c. tumor. However, in the lung model, depletion of CD8+ T cells significantly reduced the tumor burden. Furthermore, depletion of CD4+ or CD25+ T cells in vivo reduced tumor burden in s.c. and lung models, and this was associated with significantly enhanced IFN-gamma production by CD8+ T cells. These findings suggest that tumor growth facilitates the induction or recruitment of CD4+ regulatory T cells that secrete IL-10 and TGF-beta and suppress effector CD8+ T cell responses. However, CD8+ T regulatory cells expressing IL-10 and TGF-beta are also recruited or activated by the immunosuppressive environment of the lung, where they may suppress the induction of antitumor immunity.  相似文献   

11.
IL-28 elicits antitumor responses against murine fibrosarcoma   总被引:3,自引:0,他引:3  
IL-28 is a recently described antiviral cytokine. In this study, we investigated the biological effects of IL-28 on tumor growth to evaluate its antitumor activity. IL-28 or retroviral transduction of the IL-28 gene into MCA205 cells did not affect in vitro growth, whereas in vivo growth of MCA205IL-28 was markedly suppressed along with survival advantages when compared with that of controls. When the metastatic ability of IL-28-secreting MCA205 cells was compared with that of controls, the expression of IL-28 resulted in a potent inhibition of metastases formation in the lungs. IL-28-mediated suppression of tumor growth was mostly abolished in irradiated mice, indicating that irradiation-sensitive cells, presumably immune cells, are primarily involved in the IL-28-induced suppression of tumor growth. In vivo cell depletion experiments displayed that polymorphonuclear neutrophils, NK cells, and CD8 T cells, but not CD4 T cells, play an equal role in the IL-28-mediated inhibition of in vivo tumor growth. Consistent with these findings, inoculation of MCA205IL-28 into mice evoked enhanced IFN-gamma production and cytotoxic T cell activity in spleen cells. Antitumor action of IL-28 is partially dependent on IFN-gamma and is independent of IL-12, IL-17, and IL-23. IL-28 increased the total number of splenic NK cells in SCID mice and enhanced IL-12-induced IFN-gamma production in vivo and expanded spleen cells in C57BL/6 mice. Moreover, IL-12 augmented IL-28-mediated antitumor activity in the presence or absence of IFN-gamma. These findings indicate that IL-28 has bioactivities that induce innate and adaptive immune responses against tumors.  相似文献   

12.
We have constructed a recombinant defective adenovirus that expresses functional murine IFN-gamma-inducible protein-10 (IP-10) chemokine (AdCMVIP-10). Injection of AdCMVIP-10 into s.c. tumor nodules derived from the CT26 murine colorectal adenocarcinoma cell line displayed some antitumor activity but it was not curative in most cases. Previous studies have shown that injection of similar s. c. CT26 tumor nodules with adenovirus-encoding IL-12 (AdCMVIL-12) induces tumor regression in nearly 70% of cases in association with generation of antitumor CTL activity. AdCMVIP-10 synergizes with the antitumor effect of suboptimal doses of AdCMVIL-12, reaching 100% of tumor eradication not only against injected, but also against distant noninjected tumor nodules. Colocalization of both adenoviruses at the same tumor nodule was required for the local and distant therapeutic effects. Importantly, intratumoral gene transfer with IL-12 and IP-10 generated a powerful tumor-specific CTL response in a synergistic fashion, while both CD4 and CD8 T cells appeared in the infiltrate of regressing tumors. Moreover, the antitumor activity of IP-10 plus IL-12 combined gene therapy was greatly diminished by simultaneous in vivo depletion of CD4+ and CD8+ T cells but was largely unaffected by single depletion of each T cell subset. An important role for NK cells was also suggested by asialo GM1 depletion experiments. From a clinical point of view, the effects of IP-10 permit one to lower the required gene transfer level of IL-12, thus preventing dose-dependent IL-12-mediated toxicity while improving the therapeutic efficacy of the elicited antitumor response.  相似文献   

13.
Cyclooxygenase-2 (COX-2), the enzyme at the rate-limiting step of prostanoid production, has been found to be overexpressed in human lung cancer. To evaluate lung tumor COX-2 modulation of antitumor immunity, we studied the antitumor effect of specific genetic or pharmacological inhibition of COX-2 in a murine Lewis lung carcinoma (3LL) model. Inhibition of COX-2 led to marked lymphocytic infiltration of the tumor and reduced tumor growth. Treatment of mice with anti-PGE2 mAb replicated the growth reduction seen in tumor-bearing mice treated with COX-2 inhibitors. COX-2 inhibition was accompanied by a significant decrement in IL-10 and a concomitant restoration of IL-12 production by APCs. Because the COX-2 metabolite PGE2 is a potent inducer of IL-10, it was hypothesized that COX-2 inhibition led to antitumor responses by down-regulating production of this potent immunosuppressive cytokine. In support of this concept, transfer of IL-10 transgenic T lymphocytes that overexpress IL-10 under control of the IL-2 promoter reversed the COX-2 inhibitor-induced antitumor response. We conclude that abrogation of COX-2 expression promotes antitumor reactivity by restoring the balance of IL-10 and IL-12 in vivo.  相似文献   

14.
Although CTL and polymorphic, classical MHC class I molecules have well defined roles in the immune response against tumors, little is currently known regarding the participation of nonpolymorphic, nonclassical MHC class I in antitumor immunity. Using an MHC class I-deficient melanoma as a model tumor, we demonstrate that Q9, a murine MHC class Ib molecule from the Qa-2 family, expressed on the surface of tumor cells, protects syngeneic hosts from melanoma outgrowth. Q9-mediated protective immunity is lost or greatly diminished in mice deficient in CTL, including beta(2)-microglobulin knockout (KO), CD8 KO, and SCID mice. In contrast, the Q9 antitumor effects are not detectably suppressed in CD4 KO mice with decreased Th cell activity. Killing by antitumor CTL in vitro is Q9 specific and can be blocked by anti-Q9 and anti-CD8 Abs. The adaptive Q9-restricted CTL response leads to immunological memory, because mice that resist the initial tumor challenge reject subsequent challenges with less immunogenic tumor variants and show expansion of CD8(+) T cell populations with an activated/memory CD44(high) phenotype. Collectively, these studies demonstrate that a MHC class Ib molecule can serve as a restriction element for antitumor CTL and mediate protective immune responses in a syngeneic setting.  相似文献   

15.
Burkitt's lymphoma (BL) is typified by frequent tumor cell apoptosis and significant macrophage infiltration. Since BL cells have an inherent tendency to undergo apoptosis at a high rate, we reasoned that macrophages in BL are functionally enhanced in at least two activities that have implications for tumor pathogenesis: 1) engulfment of apoptotic cells, an anti-inflammatory process known to suppress immune responses, and 2) production of BL cell survival factors that limit the extent of tumor cell apoptosis. In this study, we show that the microenvironment of BL is rich in the pleiotropic cytokine IL-10, which can be produced by both tumor cells and macrophages, and that IL-10-activated human macrophages have enhanced capacity to engulf apoptotic cells in vitro. This was found to be dependent on the macrophage tethering receptor of apoptotic cells, CD14. Furthermore, IL-10-activated macrophages were found to produce markedly higher levels of the B cell survival factor, B cell-activating factor of the TNF family/B lymphocyte stimulator (BAFF/BLyS) than macrophages matured in the absence of IL-10. Coculture of macrophages with BL cells further enhanced BAFF secretion. Significantly, we show that enhancement of BL cell survival by IL-10-activated macrophages is mediated by a BAFF-dependent component and that BAFF is produced at high levels by tumor-associated macrophages in situ. These results indicate that macrophages, regulated by IL-10, have the potential to promote BL pathogenesis, first, through suppression of antitumor immunity following enhanced engulfment of apoptotic tumor cells and, second, through increased production of tumor cell growth/survival factors.  相似文献   

16.
Preclinical studies demonstrated that certain cytokines are potentially useful for the induction of antitumor immune responses. However, their administration in clinical settings was only marginally useful and evoked serious toxicity. In this study, we demonstrate that the combination of autologous inactivated tumor cells expressing IL-12 and IL-10 induced tumor remission in 50-70% of mice harboring large established colon or mammary tumors and spontaneous lung metastases, with the consequent establishment of an antitumor immune memory. Mice treatment with tumor cells expressing IL-12 was only marginally effective, while expression of IL-10 was not effective at all. Administration of the combined immunotherapy stimulated the recruitment of a strong inflammatory infiltrate that correlated with local, increased expression levels of the chemokines MIP-2, MCP-1, IFN-gamma-inducible protein-10, and TCA-3 and the overexpression of IFN-gamma, but not IL-4. The combined immunotherapy was also therapeutically effective on established lung metastases from both colon and mammary tumors. The antitumor effect of the combined immunotherapy was mainly dependent on CD8+ cells although CD4+ T cells also played a role. The production of IFN-gamma and IL-4 by spleen cells and the development of tumor-specific IgG1 and IgG2a Abs indicate that each cytokine stimulated its own Th pathway and that both arms were actively engaged in the antitumor effect. This study provides the first evidence of a synergistic antitumor effect of IL-12 and IL-10 suggesting that a Th1 and a Th2 cytokine can be effectively combined as a novel rational approach for cancer immunotherapy.  相似文献   

17.
Priming to Ag can inhibit subsequent induction of an immune response to a new epitope incorporated into that Ag, a phenomenon referred to as original antigenic sin. In this study, we show that prior immunity to a virus capsid can inhibit subsequent induction of the IFN-gamma effector T cell response to a novel CD8-restricted antigenic epitope associated with the virus capsid. Inhibition does not involve Ab to the virus capsid, as it is observed in animals lacking B cells. CD8-restricted virus-specific T cell responses are not required, as priming to virus without CTL induction is associated with inhibition. However, IL-10(-/-) mice, in contrast to IL-10(+/+) mice, generate CD8 T cell and Ab responses to novel epitopes incorporated into a virus capsid, even when priming to the capsid has resulted in high titer Ab to the capsid. Furthermore, capsid-primed mice, unable to mount a response to a novel epitope in the capsid protein, are nevertheless able to respond to the same novel epitope delivered independently of the capsid. Thus, inhibition of responsiveness to a novel epitope in a virus-primed animal is a consequence of secretion of IL-10 in response to presented Ag, which inhibits local generation of new CD8 IFN-gamma-secreting effector T cells. Induction of virus- or tumor Ag-specific CD8 effector T cells in the partially Ag-primed host may thus be facilitated by local neutralization of IL-10.  相似文献   

18.
p53 mutations are frequently found in human cancers and are often associated with the overexpression of wild-type (WT) protein or peptide sequences, supporting the notion that WT p53 epitopes may serve as potential targets for tumor immunotherapy. We have developed a cytotoxic T lymphocyte (CTL)/p53 tumor-associated antigen (TAA) model, based on immune recognition of a WT p53 determinant. WT p53-peptide-specific, major histocompatibility complex (MHC) classI-restricted CTL were produced from immunocompetent C57BL/6 (H-2b) mice after immunization with a previously defined WT p53 peptide (p53(232-240)) Epitope-specific CTL were then employed to identify syngeneic tumor cell populations expressing that antigenic determinant. Two syngeneic tumor cell lines, MC38 colon carcinoma and MC57G fibrosarcoma, were demonstrated to express the endogenous WT p53(232-240) determinant naturally, as defined by CD8 + CTL recognition. Cold-target inhibition assays confirmed that CTL-mediated lysis was due to immune recognition of the p53(232-240) peptide epitope. The p53(232-240)-specific CTL line did not lyse syngeneic normal cells (i.e., mitogen-activated splenocytes) in the absence of exogenous peptide, suggesting that the WT-p53-specific CTL could distinguish between tumor cells expressing self-TAA and normal host cells. We have demonstrated, for the first time, that the adoptive transfer of WT-p53-specific CTL to mice with established pulmonary metastasis resulted in antitumor activity in vivo. The ability to generate MHC-class-I-restricted CD8- CTL lines specific for a non-mutated p53 determinant from normal, immunocompetent mice, which display antitumor activity both in vitro and in vivo (by adoptive transfer), may have implications for the immunotherapy of certain p53-expressing malignancies.  相似文献   

19.
In this study, we show that engagement of CTLA-4 on tumor-infiltrating lymphocytes from low-dose melphalan (L-phenylalanine mustard (L-PAM))-treated MOPC-315 tumor bearers led to IL-10 secretion. In addition, the inhibitory activity of CTLA-4 ligation for IFN-gamma secretion following stimulation with anti-CD3 plus anti-CD28 mAb depended on IL-10 production. Consistent with the importance of IL-10 for CTLA-4-mediated inhibition, administration of neutralizing anti-IL-10 mAb to low-dose L-PAM-treated MOPC-315 tumor bearers (administration of blocking anti-CTLA-4 mAb) resulted in enhanced tumor-infiltrating lymphocyte-mediated anti-MOPC-315 cytotoxicity and led to complete tumor eradication in a higher percentage of mice than that observed with low-dose L-PAM alone. The percentage of MOPC-315 tumor-bearing mice cured following administration of neutralizing anti-IL-10 mAb to low-dose L-PAM-treated MOPC-315 tumor bearers was comparable to that observed following administration of blocking anti-CTLA-4 mAb. Moreover, IL-10 neutralization together with CTLA-4 blockade did not provide added therapeutic benefits to low-dose L-PAM-treated MOPC-315 tumor bearers. Taken together, these results indicate that CTLA-4 blockade improves the therapeutic outcome of low-dose L-PAM for MOPC-315 tumor bearers by inhibiting IL-10 secretion as a consequence of blocking CTLA-4 ligation.  相似文献   

20.
We have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8(+) T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-gamma. In addition, marked enhancement of local IFN-gamma gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8(+), but not CD4(+) T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号