首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon tetrachloride (CT) is an important groundwater pollutant which is only subject to biotransformation in the absence of oxygen. The anaerobic biotransformation of CT is influenced by electron shuttling compounds. The purpose of this study was to evaluate the impact of redox active vitamins on CT (100 M) metabolism in a methanogenic sludge consortium (0.5 g VSSl-1) supplied with volatile fatty acids as electron donor (0.2 g CODl-1). The redox active vitamins, tested at concentrations ranging from 0.5 to 20 M, were riboflavin (RF) and two forms of vitamin B12, cyanocobalamin (CNB12) and hydroxycobalamin (HOB12), and these were compared with a redox mediating quinone, anthraquinone-2,6-disulfonate (AQDS). Substoichiometric concentrations of RF, CNB12, HOB12 at molar ratios of vitamin:CT as low as 0.005 significantly increased rates of CT-bioconversion. These are the lowest molar ratios of vitamin B12 reported having an impact on dechlorination. Additionally, this study constitutes the first report of RF having a role in reductive dechlorination. At molar ratios of 0.1 vitamin:CT, RF, CNB12, HOB12 increased the first order rate constant of CT bioconversion by 4.0-, 13.3-and 13.6-fold, respectively. The redox active vitamins also enhanced the rates of abiotic CT conversion in heat killed sludge treatments, but the rates were approximately 4- to 5-fold lower than the corresponding vitamin enhanced rates of biological CT conversion. The addition of CNB12 or HOB12 to the live methanogenic sludge consortium increased the yield of inorganic chloride (Cl-) from CT-converted. Chloroform was a transient intermediate in CNB12 or HOB12 supplemented cultures. In contrast, the addition of RF increased the yield of chloroform from CT-converted. Taken as a whole the results clearly demonstrate that very low concentrations of redox active vitamins could potentially play an important role in accelerating the anaerobic the bioremediation of CT as well as influencing the proportions of biotransformation products formed.  相似文献   

2.
Soil column and serum bottle microcosm experiments were conducted to investigate the potential for in situ anaerobic bioremediation of trichloroethy lene (TCE) and dichloromethane (DCM) at the Pinellas site near Largo, Florida. Soil columns with continuous groundwater recycle were used to evaluate treatment with complex nutrients (casamino acids, methanol, lactate, sulfate); benzoate and sulfate; and methanol. The complex nutrients drove microbial dechlorination of TCE to ethene, whereas the benzoate/sulfate and methanol supported microbial dechlorination of TCE only to cis-1 ,2-dichloroethylene (cDCE). Microbial sulfate depletion in the benzoate/sulfate column allowed further dechlorination of cDCE to vinyl chloride. Serum bottle microcosms were used to investigate TCE dechlorination and DCM biodegradation in Pinellas soil slurries bioaugmented with liquid from the soil columns possessing TCE-dechlorinating activity and DCM biodegradation by indigenous microorganisms. Bioaugmented soil microcosms showed immediate TCE dechlorination in the microcosms with methanol or complex nutrients, but no dechlorination in the benzoate/sulfate microcosm. DCM biodegradation by indigenous microorganisms occurred in soil microcosms amended with either benzoate/sulfate or methanol, but not with complex nutrients. Bioaugmentation stimulated DCM biodegradation in both complex nutrient and methanol-amended microcosms, but appeared to inhibit DCM biodegradation in benzoate/sulfate-amended microcosms. TCE dechlorination occurred before DCM biodegradation in bioaugmented microcosms when both compounds were present.  相似文献   

3.
Relatively low concentrations of Vitamin B12 are known to accelerate the anaerobic biotransformation of carbon tetrachloride (CT) and chloroform (CF). However, the addition of vitamin B12 for field-scale bioremediation is expected to be costly. The present study considered a strategy to generate vitamin B12 by addition of biosynthetic precursors. One of the precursors, porphobilinogen (PB) involved in the formation of the corrin ring, significantly increased the CT biotransformation rates by 2.7−, 8.8- and 10.9-fold when supplemented at 160, 500 and 900 μM, respectively. A positive control with 10 μM of vitamin B12 resulted in a 5.9-fold increase in the CT-bioconversion rate. PB additions provided high molar yields of inorganic chloride (57% of CT organochlorine), comparable to that obtained with vitamin B12 supplemented cultures. The primary substrate, methanol, known to induce vitamin B12 production in methanogens and acetogens, was required for PB to have a significant impact on CT conversion. The observation suggests that PB’s role was due to stimulating vitamin B12 biosynthesis. The present study therefore provides insights on how to achieve vitamin B12 enhanced rates of CT bioremediation through the use of less complex compounds that are precursors of vitamin B12. Although PB is a costly chemical, its large impact points to corrin ring formation as the rate-limiting step.  相似文献   

4.
A fermentative enrichment culture (designated DHM-1) was developed that is capable of cometabolically biotransforming high concentrations of chloroform (CF) to nontoxic end products. Two Pantoea spp. were isolated from DHM-1 that also possess this dechlorination capability. Following acclimation to increasing levels of CF, corn syrup-grown DHM-1 was able to transform over 500 mg/liter CF in the presence of vitamin B12 (approximately 3% of CF on a molar basis) at a rate as high as 22 mg/liter/day in a mineral salts medium. CO, CO2, and organic acids were the predominant biodegradation products, suggesting that hydrolytic reactions predominate during CF transformation. DHM-1 was capable of growing on corn syrup in the presence of high concentrations of CF (as may be present near contaminant source zones in groundwater), which makes it a promising culture for bioaugmentation. Strains DHM-1B and DHM-1T transform CF at rates similar to that of the DHM-1 enrichment culture. The ability of these strains to grow in the presence of high concentrations of CF appears to be related to alteration of membrane fluidity or homeoviscous and homeophasic adaptation.Chloroform (CF) is a toxic organic compound that is frequently detected in groundwater. In the 2007 “CERCLA Priority List of Hazardous Substances,” CF ranks eleventh overall and is the third highest among chlorinated organics after vinyl chloride and polychlorinated biphenyls (4). When present at hazardous waste sites, CF is often a focal point for evaluating the feasibility of bioremediation, since it is toxic to many obligate anaerobic prokaryotes (44). For example, 1 mg/liter of CF completely inhibited dechlorination of tetrachloroethene (PCE) by a chlororespiring anaerobic isolate (32). Inhibition of reductive dechlorination of chloroethenes by CF is a general problem for sites cocontaminated with CF, which can only be overcome by first removing the CF (6).In spite of major recent advances in bioremediation of chlorinated organic compounds, treatment of CF, especially at high concentrations (e.g., >100 mg/liter), remains challenging. Although aerobic biotransformation of CF is possible (e.g., cometabolism by a butane-grown strain) (14), CF is more difficult to cometabolize than trichloroethene (42). Biotransformation of CF by mixed or pure cultures under methanogenic (5, 21) and sulfate-reducing (20) conditions has been reported, however, only at low-mg/liter CF concentrations.Corrinoids such as vitamin B12 (i.e., cyanocobalamin) are effective catalysts for increasing the rate of halomethane biotransformation under anaerobic conditions. Addition of vitamin B12 also shifts the pathway away from reductive dechlorination and toward hydrolytic and substitutive reactions, forming CO, CO2, and organic acids as the major products (8, 23, 24). With low levels of B12 added (3 to 5% molar ratios of CF), an enrichment culture grown on dichloromethane (DCM) as the sole substrate (8) and a lactate-grown sulfate-reducing enrichment culture (18) were able to biotransform up to 260 mg/liter and 270 mg/liter CF, respectively. However, use of a DCM-grown culture is not feasible for in situ bioremediation since DCM is also a regulated contaminant and the culture grows well only at 35°C. A major drawback with using a lactate-grown culture is the accumulation of DCM during CF transformation. Organohalide respiration of CF by a Dehalobacter population was recently reported (19), although DCM is the end product. Further treatment of the DCM would be necessary for bioremediation to be successful, although bioaugmentation cultures for this purpose are not yet available. It is apparent that a strategy for bioremediation of high concentrations of chloroform is still lacking.In a recent microcosm study using soil and groundwater from an industrial site, we demonstrated that bioaugmentation is a technically feasible remediation strategy for high concentrations of chloroform as well as carbon tetrachloride (CT) and trichlorofluoromethane (35). High rates of transformation were achieved with a fermentative enrichment culture that grows on corn syrup, supplemented with B12 (1.3 to 1.4 mol%). The objectives of this study were to characterize the fermentative culture in terms of its maximum rate of CF transformation, its dependence on B12 for transformation of CF, and its ability to grow on corn syrup in the presence of CF; to identify the transformation products from CF; to isolate and identify the microbes in the enrichment culture that are responsible for CF biotransformation; and to investigate the adaptation mechanisms used by the isolates to tolerate the toxicity of high concentrations of CF.  相似文献   

5.
The aim of this study was to evaluate the impact of selected electron donors and electron acceptors on the anaerobic biodegradation of DDT and its major metabolites in a muck soil with a long history of exposure to the pesticide. Loss of DDT was measured in anaerobic microcosms supplemented with H2, lactate, and acetate. The greatest loss of DDT (approximately 87 %) was observed in microcosms amended with lactate and no additional electron acceptor compared to the no additional electron donor or acceptor sets. An increase in measureable concentrations of DDx was observed in un-amended microcosms. In larger scale mesocosms, significant increases in dissolved organic carbon (DOC) corresponded with low redox potentials. Increases in DOC corresponded with sharp increases in measured concentrations of DDx, followed by a decrease in measured DDT concentrations in lactate-amended mesocosms. Our studies indicate that sorbed DDx is released upon anaerobic incubation, and that indigenous microorganisms capable of DDx degradation respond to lactate additions. Both the potential for release of sorbed DDx and the potential for biodegradation of DDx should be considered during remediation of DDx-contaminated organic soils at low redox potentials.  相似文献   

6.
The wide range of redox conditions and diversity of microbial populations in organic-rich wetland sediments could enhance biodegradation of chlorinated solvents. To evaluate potential biodegradation rates of trichloroethylene (TCE) and its anaerobic daughter products (cis-1,2-dichloroethylene; trans-1,2-dichloroethylene; and vinyl chloride), laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a TCE contaminant plume. Under methanogenic conditions, biodegradation rates of TCE were extremely rapid at 0.30 to 0.37 d-1 (half-life of about 2 days). Although the TCE biodegradation rate was slower under sulfate-reducing conditions (0.032 d-1) than under methanogenic conditions, the rate was still two orders of magnitude higher than those reported in the literature for microcosms constructed with sandy aquifer sediments. In the aerobic microcosm experiments, biodegradation occurred only if methane consumption occurred, indicating that methanotrophs were involved. Comparison of laboratory-measured rates indicates that production of the 1,2-dichloroethylene isomers and vinyl chloride by anaerobic TCE biodegradation could be balanced by their consumption through aerobic degradation where methanotrophs are active in wetland sediment. TCE degradation rates estimated using field data (0.009 to 0.016 d-1) agree with the laboratory-measured rates within a factor of 3 to 22, supporting the feasibility of natural attenuation as a remediation method for contaminated groundwater discharging in this wetland and other similar environments.  相似文献   

7.
The existence of anaerobic biodegradation of lignin was examined in mixed microflora. Egyptian soil samples, in which rapid mineralization of organic matter takes place in the presence of an important anaerobic microflora, were used to obtain the anaerobic enrichment cultures for this study. Specifically, 14CO2 or [14C]lignin wood was used to investigate the release of labeled gaseous or soluble degradation products of lignin in microbial cultures. No conversion of 14C-labeled lignin to 14CO2 or 14CH4 was observed after 6 months of incubation at 30 degrees C in anaerobic conditions with or without NO3-. A small increase in soluble radioactivity was observed in certain cultures, but it could not be related to the release of catabolic products during the anaerobic biodegradation of lignin.  相似文献   

8.
The existence of anaerobic biodegradation of lignin was examined in mixed microflora. Egyptian soil samples, in which rapid mineralization of organic matter takes place in the presence of an important anaerobic microflora, were used to obtain the anaerobic enrichment cultures for this study. Specifically, 14CO2 or [14C]lignin wood was used to investigate the release of labeled gaseous or soluble degradation products of lignin in microbial cultures. No conversion of 14C-labeled lignin to 14CO2 or 14CH4 was observed after 6 months of incubation at 30 degrees C in anaerobic conditions with or without NO3-. A small increase in soluble radioactivity was observed in certain cultures, but it could not be related to the release of catabolic products during the anaerobic biodegradation of lignin.  相似文献   

9.
Dichloromethane (DCM) is a toxic pollutant showing prolonged persistence in water. DCM biodegradation is usually determined from increases in Cl ions, gas chromatography, or by using radioisotopes. Herein, we present an original and easy spectrophotometric method to estimate DCM concentrations in cultures and environmental samples during DCM biodegradation experiments.  相似文献   

10.
Little is known about the ability of methanogens to grow and produce methane in estuarine environments. In this study, traditional methods for cultivating strictly anaerobic microorganisms were combined with Fluorescence in situ hybridization (FISH) technique to enrich and identify methanogenic Archaea cultures occurring in highly polluted sediments of tropical Santos–São Vicente Estuary (São Paulo, Brazil). Sediment samples were enriched at 30°C under strict anaerobic and halophilic conditions, using a basal medium containing 2% of sodium chloride and amended with glucose, methanol, and sodium salts of acetate, formate and lactate. High methanogenic activity was detected, as evidenced by the biogas containing 11.5 mmol of methane at 20 days of incubation time and methane yield of 0.138-mmol CH4/g organic matter/g volatile suspense solids. Cells of methanogenic Archaea were selected by serial dilution in medium amended separately with sodium acetate, sodium formate, or methanol. FISH analysis revealed the presence of Methanobacteriaceae and Methanosarcina sp. cells.  相似文献   

11.
Chloroform (CF, CHCl(3)) is a recalcitrant and toxic environmental pollutant. In this communication we report for the first time a microbial community capable of complete CF dechlorination by metabolic processes. Cultures derived from subsurface soil (3.5 m) could sustain complete dechlorination of CF at levels of least 360 μM at a rate of 40 μM per day. Scrutiny of CF dechlorination revealed two metabolic processes at work. First, CF was respired to dichloromethane (DCM, CH(2) Cl(2)), which was then fermented to acetate, hydrogen and carbon dioxide. Elevated hydrogen partial pressures were found to inhibit the fermentation process. Interspecies hydrogen transfer was observed in the form of methanogenesis and acetogenesis. This suggests that the dechlorination process required syntrophic partners to maintain low hydrogen partial pressures. (13)C-labelled DCM was employed to help elucidate the chemistry of the process and identify bacterial community members involved. CF respiring cultures, where emulsified vegetable oil was supplied as the electron donor and DCM fermenting cultures, where DCM was supplied as the sole organic carbon source were studied separately. Pyrosequencing of these cultures revealed Dehalobacter lineages as a predominant community member in both. Subsequent growth experiments confirmed that the proliferation of Dehalobacter was linked directly to both the dehalorespiration and dehalofermentation processes.  相似文献   

12.
Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments   总被引:1,自引:0,他引:1  
We examined the extent of biodegradation of benzene, toluene, ethylbenzene and the three isomers of xylene (BTEX) as a mixture and from gasoline in four different sediments: the New York/New Jersey Harbor estuary (polluted); Tuckerton, N.J. (pristine); Onondaga Lake, N.Y. (polluted) and Blue Mtn. Lake, N.Y. (pristine). Enrichment cultures were established with each sediment using denitrifying, sulfidogenic, methanogenic and iron reducing media, as well as site water. BTEX loss, as measured by GC-FID, was extensive in the sediments which had a long history of pollution, with all compounds being utilized within 21–91 days in the most active cultures, and was very slight or non-existent in the pristine sediments. Also, the pattern of loss was different under the various reducing conditions within each sediment and between sediments. For example benzene loss was only observed in sulfidogenic cultures from the NY/NJ Harbor sediments while toluene was degraded under all redox conditions. The loss of BTEX was correlated to the reduction of the various electron acceptors. In cultures amended with gasoline the degradation was much slower and incomplete. These results show that the fate of the different BTEX components in anoxic sediments is dependent on the prevailing redox conditions as well as on the characteristics and pollution history of the sediment.  相似文献   

13.
Humus constitutes a very abundant class of organic compounds that are chemically heterogeneous and widely distributed in terrestrial and aquatic environments. Evidence accumulated during the last decades indicating that humic substances play relevant roles on the transport, fate, and redox conversion of organic and inorganic compounds both in chemically and microbially driven reactions. The present review underlines the contribution of humus-reducing microorganisms in relevant environmental processes such as biodegradation of recalcitrant pollutants and mitigation of greenhouse gases emission in anoxic ecosystems, redox conversion of industrial contaminants in anaerobic wastewater treatment systems, and on the microbial production of nanocatalysts and alternative energy sources.  相似文献   

14.
A two-stage bioreactor has been developed to link dechlorination of halogenated methane compounds to the anaerobic processes of methanogenesis and denitrification. A digester methanogenic consortium was shown to dechlorinate chloroform (CF) and carbon tetrachloride (CT) to dichloromethane (DCM), and DCM was then mineralized by an acclimated denitrifying biological activated carbon consortium. Combining these two processes, a sequential methanogenic-denitrifying bioreactor (SMDB) system that completely degraded polychlorinated methanes including CT, CF, and DCM was developed. More than 95% of the added CT and CF was dechlorinated in the methanogenic bioreactor with methanol as the primary substrate, and the resultant DCM was biodegraded in the denitrifying bioreactor with nitrate as the electron acceptor. In the denitrifying bioreactor, the residual CF was completely removed, and the DCM removal efficiency was more than 95%. This novel bioreactor system eliminates the need for aeration and so avoids the air contamination associated with aerobic biotreatment of volatile chlorinated pollutants. This SMDB system provides an alternative to conventional biotreatment of wastewaters and other matrices contaminated with polychlorinated methanes and is, to our knowledge, the first report on such a sequential anoxic system. Received: 26 May 1999 / Accepted: 1 November 1999  相似文献   

15.
Twenty-eight strains of Rhizobium spp. were tested for their ability to grow in chemically-defined medium lacking growth factors. Two strains, R. meliloti GR4B and Rhizobium spp. ( Acacia ) GRH28, were selected, on the basis of their good growth under the conditions imposed, for further quantification of the production of water-soluble vitamins (thiamine, niacin, riboflavin, pantothenic acid and biotin) in chemically defined media amended with different compounds (mannitol, glucose or sodium succinate) as sole carbon sources. Qualitative and quantitative production of vitamins in chemically-defined media was significantly affected by the use of C sources of a different nature and the age of the cultures. Strain GRH28 produced all the vitamins analysed, and high biological levels of biotin (14 ng ml–1 culture) were detected after 6 d of culture in mineral medium amended with mannitol. Pantothenic acid was the vitamin detected in the highest amounts (up to 1 μg ml–1 of culture) in culture supernatant fluids of strain GR4B grown for 6 d with succinate as sole carbon source.  相似文献   

16.
The combination of hydroxocobalamin (vitamin B12b) and ascorbicacid (vitamin C) can cause the death of tumor cells at the concentrationsof the components at which they are nontoxic when administeredseparately. This cytotoxic action on epidermoid human larynx carcinomacells HEp-2 in vitro is shown to be due to the hydrogen peroxidegenerated by the combination of vitamins B12b and C. The drop inthe glutathione level preceding cell death was found to be the result ofcombined action of the vitamins. It is supposed that the induction of celldeath by combined action of vitamins B12b and C is connected to the damageof the cell redox system.  相似文献   

17.
The potential to enhance the anaerobic biodegradation of nonylphenol ethoxylates (NPEOs) by introducing additional sulfate or nitrate as electron acceptor was investigated. The results showed that adding nitrate or sulfate could significantly enhance the anaerobic biodegradation of NPEOs and alleviate the accumulation of their estrogenic intermediates. However, these terminal electron acceptors had no influence on the component of the anaerobic biodegradation products of NPEOs. To the best of our knowledge, it is the first report of the enhancement of anaerobic biodegradation of NPEOs by introducing additional terminal electron acceptor with relatively high redox potential. These observations have significant environmental implications in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

18.
The microbial mixed culture RM grows with dichloromethane (DCM) as the sole energy source generating acetate, methane, chloride and biomass as products. Chloromethane (CM) was not an intermediate during DCM utilization consistent with the observation that CM could not replace DCM as a growth substrate. Interestingly, cultures that received DCM and CM together degraded both compounds concomitantly. Transient hydrogen (H2) formation reaching a maximum concentration of 205 ± 13 ppmv was observed in cultures growing with DCM, and the addition of exogenous H2 at concentrations exceeding 3000 ppmv impeded DCM degradation. In contrast, CM degradation in culture RM had a strict requirement for H2. Following five consecutive transfers on CM and H2, Acetobacterium 16S rRNA gene sequences dominated the culture and the DCM‐degrader Candidatus Dichloromethanomonas elyunquensis was eliminated, consistent with the observation that the culture lost the ability to degrade DCM. These findings demonstrate that culture RM harbours different populations responsible for anaerobic DCM and CM metabolism, and further imply that the DCM and CM degradation pathways are mechanistically distinct. H2 generated during DCM degradation is consumed by the hydrogenotrophic CM degrader, or may fuel other hydrogenotrophic processes, including organohalide respiration, methanogenesis and H2/CO2 reductive acetogenesis.  相似文献   

19.
The relationship between corrosion and biodegradation of bio- and petroleum-based fuels was evaluated using aerobic seawater, fuel and unprotected carbon steel coupons under stagnant conditions to simulate a potential fuel storage condition. Aerobic respiration and corrosion reactions consumed oxygen in the incubations in a short time. The transient oxygen influenced the microbial biodegradation of all fuels and resulted in a suite of characteristic metabolites, including catechols. The corrosion was believed to be the result of biogenic sulfide production and in all cases, the black corrosion products contained chlorine and sulfur (presumed chloride and sulfide) in addition to iron. There were few differences in electrochemically measured corrosion rates in incubations amended with any of the fuels or their blends. Clone library analysis demonstrated higher proportions of Firmicutes, Deltaproteobacteria (primarily sulfate-reducing bacteria), Chloroflexi, and Lentisphaerae in incubations exposed to fuels than the original seawater. Relative proportions of sequences affiliated with these bacterial groups varied with fuel. Methanogen sequences similar to those of Methanolobus were also found in multiple incubations. Despite the dominance of characteristically anaerobic taxa, sequences coding for an alkane monooxygenase from marine hydrocarbon-degrading genera and aerobically produced intermediates were observed, indicative that organisms with this metabolic potential were active at some point during the incubation. Aerobic oxidation of fuel components resulted in the formation of a series of intermediates that could be used by anaerobic seawater microbial communities to support metabolism, sulfide production, and carbon steel corrosion.  相似文献   

20.
The numbers of oil-utilizing bacteria in several samples of clean and oil-polluted soils counted on vitamin-containing media were severalfold higher than the numbers counted on vitamin-free media. Colonies that grew on a medium containing a vitamin mixture were tested for growth on the same medium lacking any vitamins. More than 90% of the total colonies failed to grow. The remaining 10% grew, yet their growth was enhanced, when vitamins were added. The predominant oil-utilizing bacteria in one of the test desert soil samples were various strains of Cellulomonas flavigena and Rhodococcus erythropolis. Minor organisms belonged to the genera Pseudomonas, Bacillus and Arthrobacter. Two vitamin-requiring biovars of C. flavigena and R. erythropolis were selected for further study. Their growth on n-octadecane and phenanthrene as sole sources of carbon and energy as well as their potential for hydrocarbon consumption were enhanced by added vitamins, e.g. folic acid, pyridoxine, vitamin B12, biotin and others. In a field experiment, it was confirmed that vitamin fertilization of an oil-polluted sand sample enhanced the biodegradation of constituent hydrocarbons of that sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号