首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption and bioelectrocatalytic activity of native horseradish peroxidase (HRP) and its recombinant forms on polycrystalline gold electrodes were studied. Recombinant forms of HRP were produced by a genetic engineering approach using an E. coli expression system. According to direct mass measurements with a quartz crystal microbalance, all the forms of HRP formed monolayer coverage of the enzyme on the gold surface. However, only gold electrodes modified with the recombinant HRP forms (non-glycosylated) exhibited high and stable current response to H2O2 due to its bioelectrocatalytic reduction based on direct electron transfer (ET) between gold and the active site of the enzyme. Introduction of a six-His tag either at the C-terminus or at the N-terminus of the enzyme molecule additionally increased the strength of the enzyme binding with the gold surface and the efficiency of direct ET. Immobilization of recombinant forms of HRP containing histidine functional groups on the surface of the gold electrode was used both for the development of a P-chip, a biosensor for hydrogen peroxide determination based on direct ET, and for the development of a bienzyme biosensor electrode for the determination of L-lysine based on co-immobilized recombinant forms of HRP and L-lysine--oxidase.  相似文献   

2.
Laccase from Trametes hirsuta basidiomycete has been covalently bound to graphite electrodes electrochemically modified with phenyl derivatives as a way to attach the enzyme molecules with an adequate orientation for direct electron transfer (DET). Current densities up to 0.5mA/cm(2) of electrocatalytic reduction of O(2) to H(2)O were obtained in absence of redox mediators, suggesting preferential orientation of the T1 Cu centre of the laccase towards the electrode. The covalent attachment of the laccase molecules to the functionalized electrodes permitted remarkable operational stability. Moreover, O(2) bioelectroreduction based on DET between the laccase and the electrode was not inhibited by chloride ions, whereas mediated bioelectrocatalysis was. In contrast, fluoride ions inhibited both direct and mediated electron transfers-based bioelectrocatalytic reduction of O(2). Thus, two different modes of laccase inhibition by halides are discussed.  相似文献   

3.
In order to improve the direct electron transfer in enzymatic biofuel cells, a rational design of a laccase electrode is presented. Graphite electrodes were functionalized with 4-[2-aminoethyl] benzoic acid hydrochloride (AEBA). The benzoic acid moiety of AEBA interacts with the laccase T1 site as ligand with an association constant (K(A)) of 6.6×10(-6) M. The rational of this work was to orientate the covalent coupling of laccase molecule with the electrode surface through the T1 site and thus induce the direct electron transfer between the T1 site and the graphite electrode surface. Direct electron transfer of laccase was successfully achieved, and the semi-enzymatic fuel cell Zn-AEBA laccase showed a current density of 2977 μA cm(-2) and a power density of 1190 μW cm(-2) at 0.41 V. The molecular oriented laccase cathode showed 37% higher power density and 43% higher current density than randomly bound laccase cathode. Chronoaperometric measurements of the Zn-AEBA fuel cell showed functionality on 6 h. Thus, the orientation of the enzyme molecules improves the electron transfer and optimizes enzyme-based fuel cells efficiency.  相似文献   

4.
Four forms of horseradish peroxidase (HRP) have been used to prepare peroxidase-modified gold electrodes for mediatorless detection of peroxide: native HRP, wild type recombinant HRP, and two recombinant forms containing six-His tag at the C-terminus and at the N-terminus, respectively. The adsorption of the enzyme molecules on gold was studied by direct mass measurements with electrochemical quartz crystal microbalance. All the forms of HRP formed a monolayer coverage of the enzyme on the gold surface. However, only gold electrodes with adsorbed recombinant HRP forms exhibited high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct electron transfer between gold and HRP. The sensitivity of the gold electrodes modified with recombinant HRPs was in the range of 1.4-1.5 A M(-1) cm(-2) at -50 mV versus Agmid R:AgCl. The response to H(2)O(2) in the concentration range 0.1-40 microM was not dependent on the presence of a mediator (i.e. catechol) giving strong evidence that the electrode currents are diffusion limited. Lower detection limit for H(2)O(2) detection was 10 nM at the electrodes modified with recombinant HRPs.  相似文献   

5.
The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI→LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (khet for LCCIa = 1.3 × 10−4 cm s−1). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.  相似文献   

6.
Electrochemical studies of a truncated laccase produced in Pichia pastoris   总被引:3,自引:0,他引:3  
The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI-->LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (k(het) for LCCIa = 1.3 x 10(-4) cm s(-1)). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.  相似文献   

7.
Natural and recombinant fungal laccases for paper pulp bleaching   总被引:10,自引:0,他引:10  
Three laccases, a natural form and two recombinant forms obtained from two different expression hosts, were characterized and compared for paper pulp bleaching. Laccase from Pycnoporus cinnabarinus, a well known lignolytic fungus, was selected as a reference for this study. The corresponding recombinant laccases were produced in Aspergillus oryzae and A. niger hosts using the lacI gene from P. cinnabarinus to develop a production process without using the expensive laccase inducers required by the native source. In flasks, production of recombinant enzymes by Aspergilli strains gave yields close to 80 mg l–1. Each protein was purified to homogeneity and characterized, demonstrating that the three hosts produced proteins with similar physico-chemical properties, including electron paramagnetic resonance spectra and N-terminal sequences. However, the recombinant laccases have higher Michaelian (K m) constants, suggesting a decrease in substrate/enzyme affinity in comparison with the natural enzyme. Moreover, the natural laccase exhibited a higher redox potential (around 810 mV), compared with A. niger (760 mV) and A. oryzae (735 mV). Treatment of wheat straw Kraft pulp using laccases expressed in P. cinnabarinus or A. niger with 1-hydroxybenzotriazole as redox mediator achieved a delignification close to 75%, whereas the recombinant laccase from A. oryzae was not able to delignify pulp. These results were confirmed by thioacidolysis. Kinetic and redox potential data and pulp bleaching results were consistent, suggesting that the three enzymes are different and each fungal strain introduces differences during protein processing (folding and/or glycosylation).  相似文献   

8.
This work reports on the direct electrochemistry of the Desulfovibrio gigas aldehyde oxidoreductase (DgAOR), a molybdenum enzyme of the xanthine oxidase family that contains three redox-active cofactors: two [2Fe-2S] centers and a molybdopterin cytosine dinucleotide cofactor. The voltammetric behavior of the enzyme was analyzed at gold and carbon (pyrolytic graphite and glassy carbon) electrodes. Two different strategies were used: one with the molecules confined to the electrode surface and a second with DgAOR in solution. In all of the cases studied, electron transfer took place, although different redox reactions were responsible for the voltammetric signal. From a thorough analysis of the voltammetric responses and the structural properties of the molecular surface of DgAOR, the redox reaction at the carbon electrodes could be assigned to the reduction of the more exposed iron cluster, [2Fe-2S] II, whereas reduction of the molybdopterin cofactor occurs at the gold electrode. Voltammetric results in the presence of aldehydes are also reported and discussed.  相似文献   

9.
Rhus vernicifera (Rv) laccase was purified to electrophoretic homogeneity by hydrophobic interaction chromatography. A comprehensive study of the direct electrochemistry of Rv laccase covalently immobilized at a gold electrode using alkanethiol monolayers was undertaken. The observed midpoint potential was 410 mV versus the normal hydrogen electrode (NHE), consistent with reduction potentials obtained by potentiometric titration for the T1 copper site. Evidence is presented for a concerted 4-electron reversible process at slow scan rates (v) on the basis of peak current ratios (i(pa)/i(pc)). Catalytic currents were observed in the presence of the biological substrate oxygen, indicating that laccase activity is retained throughout the immobilization process. Electrochemical characteristics of the immobilized laccase were essentially invariant across the pH range 5.5-8.5 and the temperature range 5-35 degrees C. The purified enzyme displayed a pH optimum of 9.0, when assayed spectrophotometrically with syringaldazine as a substrate. Inhibition of the laccase activity with azide or fluoride showed an I(50)(NaN(3)) of 2.5 mM and an I(50)(NaF) of 18.5 mM. Electrochemistry in the presence of azide reduces the anodic current by ca. one-half, consistent with the 4-electron process decreasing to a 2-electron process. However, fluoride has no effect on anaerobic electrochemistry. These electrochemical results suggest that the pH dependence of laccase activity is related to the effects of pH on the structure or binding of the substrate.  相似文献   

10.
Gold nanoparticles have been attached onto glassy carbon electrode surface through sulfhydryl-terminated monolayer and characterized by X-ray photoelectron spectroscopy, atomic force microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The gold nanoparticles-attached glassy carbon electrodes have been applied to the immobilization/adsorption of hemoglobin, with a monolayer surface coverage of about 2.1 x 10(-10) mol cm(-2), and consequently obtained the direct electrochemistry of hemoglobin. Gold nanoparticles, acting as a bridge of electron transfer, can greatly promote the direct electron transfer between hemoglobin and the modified glassy carbon electrode without the aid of any electron mediator. In phosphate buffer solution with pH 6.8, hemoglobin shows a pair of well-defined redox waves with formal potential (E0') of about -0.085 V (versus Ag/AgCl/saturated KCl). The immobilized hemoglobin maintained its biological activity, showing a surface controlled electrode process with the apparent heterogeneous electron transfer rate constant (ks) of 1.05 s(-1) and charge-transfer coefficient (a) of 0.46, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide. A potential application of the hemoglobin-immobilized gold nanoparticles modified glassy carbon electrode as a biosensor to monitor hydrogen peroxide has been investigated. The steady-state current response increases linearly with hydrogen peroxide concentration from 2.0 x 10(-6) to 2.4 x 10(-4) M. The detection limit (3sigma) for hydrogen peroxide is 9.1 x 10(-7) M.  相似文献   

11.
The bacterially-expressed laccase, small laccase (SLAC) of Streptomyces coelicolor, was incorporated into electrodes of both direct electron transfer (DET) and mediated electron transfer (MET) designs for application in biofuel cells. Using the DET design, enzyme redox kinetics were directly observable using cyclic voltammetry, and a redox potential of 0.43 V (SHE) was observed. When mediated by an osmium redox polymer, the oxygen-reducing cathode retained maximum activity at pH 7, producing 1.5 mA/cm2 in a planar configuration at 900 rpm and 40 degrees C, thus outperforming enzyme electrodes produced using laccase from fungal Trametes versicolor (0.2 mA/cm2) under similar conditions. This improvement is directly attributable to differences in the kinetics of SLAC and fungal laccases. Maximum stability of the mediated SLAC electrode was observed at pH above the enzyme's relatively high isoelectric point, where the anionic enzyme molecules could form an electrostatic adduct with the cationic mediator. Porous composite SLAC electrodes with increased surface area produced a current density of 6.25 mA/cm2 at 0.3 V (SHE) under the above conditions.  相似文献   

12.
We report the modification of gold and graphite electrodes with commercially available carbon nanotubes for immobilization of Desulfovibrio fructosovorans [NiFe] hydrogenase, for hydrogen evolution or consumption. Multiwalled carbon nanotubes, single-walled carbon nanotubes (SWCNs), and amine-modified and carboxyl-functionalized SWCNs were used and compared throughout. Two separate methods were performed: covalent attachment of oriented hydrogenase by controlled architecture of carbon nanotubes at gold electrodes, and adsorption of hydrogenase at carbon-nanotube-coated pyrolytic graphite electrodes. In the case of self-assembled carbon nanotubes at gold electrodes, hydrogenase orientation based on electrostatic interaction with the electrode surface was found to control the electrocatalytic process for H2 oxidation. In the case of carbon nanotube coatings on pyrolytic graphite electrodes, catalysis was controlled more by the geometry of the nanotubes than by the orientation of the enzyme. Noticeably, shortened SWCNs were demonstrated to allow direct electron transfer and generate high and quite stable current densities for H2 oxidation via adsorbed hydrogenase, despite having many carboxylic surface functions that could yield unfavorable hydrogenase orientation for direct electron transfer. This result is attributable to the high degree of oxygenated surface functions in addition to the length of shortened SWCNs that yields highly divided materials. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
A novel electrochemical reflection cell combining electrochemical techniques and spectroscopy which uses a solid gold working electrode as an optical mirror is described. This cell can be used at path lengths as low as a few micrometers and thus is suitable for ultraviolet/visible (UV/Vis) and infrared spectroscopy even for aqueous solutions and suspensions. The cell was designed for small sample volumes of only a few microliters, thus reducing the effort for sample preparation. Due to the short path length of some micrometers, the entire volume is within the Nernst diffusion layer, hence resulting in fast equilibration. Evaluation of the technique is described with direct electrochemistry of horse heart cytochrome c at the gold electrode modified with 4,4'-dithiodipyridine. Cyclic voltammograms indicate rapid and reversible electrochemistry with the correct midpoint potential (52 mV vs Ag/AgCl/3 M KCl). Chronoamperometry and coulometry confirm rapid and complete oxidation and reduction; the cell volume can be entirely fully reduced within less than 10-20 s. Spectroscopy in the UV/Vis region, with potentials at the working electrode stepped between -390 and 390 mV, show perfect titration of the cytochrome c heme bands. A Nernst fit of the alpha band absorption, with redox potential Em and number of electrons n left as parameters, yields a midpoint potential of 49 mV and n=0.9. The potential of this cell in the investigation of biological electron transfer reactions and in the study of bioenergetic systems is discussed.  相似文献   

14.
Both native Trametes hirsuta laccase and the same laccase modified with palmytic chains to turn it more hydrophobic were prepared and studied with cyclic voltammetry and Raman spectroscopy. Native laccase immobilized in the monoolein cubic phase was characterized with resonance Raman spectroscopy, which demonstrated that the structure at the “blue” copper site of the protein remained intact. The diamond-type monoolein cubic phase prevents denaturation of enzymes on the electrode surface and provides contact of the enzyme with the electrode either directly or through the mediation by electroactive probes. Direct electron transfer for both laccases incorporated into a lyotropic liquid crystal was obtained under anaerobic conditions, whereas bioelectrocatalytic activity was shown only for the native enzyme. The differences in electrochemical behavior of native and hydrophobic laccase as well as possible mechanisms of direct and mediated electron transfers are discussed. The Michaelis constant for 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS2−), K Mapp, and the maximal current, I max, for the native enzyme immobilized onto the electrode were estimated to be 0.24 mM, and 5.3 μA, respectively. The maximal current density and the efficiency of the catalysis, I max/K Mapp, were found to be 73 μA cm−2 and 208.2 μA cm−2 mM−1, respectively, and indicated a high efficiency of oxygen electroreduction by the enzyme in the presence of ABTS2− in the cubic-phase environment. Rate constants were calculated to be 7.5 × 104 and 3.6 × 104 M−1 s−1 for native and hydrophobic laccase, respectively.  相似文献   

15.
Direct electron transfer of glucose oxidase promoted by carbon nanotubes   总被引:11,自引:0,他引:11  
A stable suspension of carbon nanotubes (CNT) was obtained by dispersing the CNT in a solution of surfactant, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant). CNT (dispersed in the solution of 0.1% CTAB) has promotion effects on the direct electron transfer of glucose oxidase (GOx), which was immobilized onto the surface of CNT. The direct electron transfer rate of GOx was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of GOx, with a midpoint potential of about -0.466 V (vs SCE (saturated calomel electrode)) in the phosphate buffer solution (PBS, pH 6.9). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of midpoint potential (E1/2) were estimated. The dependence of E1/2 on solution pH indicated that the direct electron transfer reaction of GOx is a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOx retained its bioelectrocatalytic activity for the oxidation of glucose, suggesting that the electrode may find use in biosensors (for example, it may be used as a bioanode in biofuel cells). The method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

16.
The electrochemistry of the enzyme, sulfide:cytochrome c oxidoreductase, also known as flavocytochrome c552 from the purple sulfur bacterium, Chromatium vinosum, has been studied using several modified electrodes. Direct electron transfer between the heme of the flavocytochrome and an electrode is observed in the presence of a redox-inactive cationic species which promotes the voltammetry of the enzyme. Quasi-reversible electron transfer was achieved using the aminoglycoside, neomycin, as a promoter at either a modified gold or polished edge-plane graphite electrode. Further evidence for direct electron transfer is provided by the catalytic response of the enzyme at the electrode in the presence of substrate. Also reported is the direct spectroelectrochemistry of flavocytochrome c552 at an optically transparent thin layer gold electrode modified with Cys-Glu-Cys in the presence of neomycin.  相似文献   

17.
Direct and indirect electron transfer between electrodes and redox proteins   总被引:4,自引:0,他引:4  
The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides. Careful design of electrode surfaces and electrolyte conditions are required for the attainment of rapid and reversible protein-electrode interaction. The electron transfer reactions of more complex systems, such as redox enzymes, are now being examined. The 'well-behaved' electrochemistry of redox proteins can be usefully exploited by coupling the electrode reaction to enzymes for which the redox proteins act as cofactors. In systems where direct electron transfer is very slow, small electron carriers, or mediators, may be employed to enhance the rate of electron exchange with the electrode. The organometallic compound ferrocene and its derivatives have proved particularly effective in this role. A new generation of electrochemical biosensors employs ferrocene derivatives as mediators.  相似文献   

18.
Summary Thioredoxin, a redox active disulfide protein, has been specifically immobilized at a modified gold electrode. The thioredoxin is uniquely oriented relative to the electrode surface via a histidine tag thereby enabling the redox mechanism of protein to be examined. When scanning the applied potential in the negative direction (cathodic), two one-electron reduction waves can be observed. The first of these redox waves occurs at −90 mV and is electrochemically reversible at all scan rates whereas the second wave occurs at −433 mV is irreversible. These two processes are interpreted as the initial reduction of the disulfide form of the protein to a stable (reversible) semi-reduced radical anion intermediate, followed by an electrochemically irreversible process to form a fully reduced thioredoxin. These electron transfer characteristics suggest that a radical intermediate retaining the sulfur-sulfur bond is thermodynamically stable but the addition of a second electron results in bond scission.  相似文献   

19.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme.  相似文献   

20.
The electrochemistry of the redox proteins, cytochrome c, cytochrome b5, plastocyanin and ferredoxin at modified gold electrodes has been examined on the basis that electron transfer takes place at electroactive sites which are microscopic in size. Using this model, it is now proposed that electrochemistry of these proteins occurs at suitably modified sites with fast rates at potentials near the standard redox potential. The microscopic model implies that redox proteins and enzymes take part in fast electron transfer at specific sites on the electrode, other sites being completely ineffective. This form of molecular recognition, i.e. the ability to discriminate between the different sites on an electrode surface, mimics homogeneous redox reactions wherein redox active proteins 'recognize' their biological partners in a very specific sense. Previously, protein electrochemistry has been interpreted via use of a macroscopic model in which the proteins are transported to the electrode surface by linear diffusion followed by quasi-reversible or irreversible electron transfer to the electrode surface. The microscopic model, which assumes that the movement of the protein occurs predominantly by radial diffusion to very small sites, would appear to explain the data more satisfactorily and be consistent with biologically important, homogeneous redox reactions which are known to be fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号