首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transforming growth factor β (TGF-β) signaling plays an important role in the pathogenesis of cardiac hypertrophy. However, the molecular mechanism of TGF-β signaling during the process of cardiac remodeling remains poorly understood. In the present study, by employing single-molecule fluorescence imaging approach, we demonstrated that in neonatal rat cardiomyocytes, TGF-β type II receptors (TβRII) existed as monomers at the low expression level, and dimerized upon TGF-β1 stimulation. Importantly, for the first time, we found the increased dimerization of TβRII in hypertrophic cardiomyocytes comparing to the normal cardiomyocytes. The enhanced TβRII dimerization was correlated with the enhanced Smad3 phosphorylation levels. These results provide new information on the mechanism of TGF-β signaling in cardiac remodeling.  相似文献   

3.
一氧化氮在防止心肌肥厚反应中的作用及其机制   总被引:29,自引:0,他引:29  
Zhan CD 《生理科学进展》2000,31(4):322-324
本工作从整体和细胞水平探讨一氧化氮(NO)在防止心肌肥厚反应中的作用及其机制。压力超负荷心肌肥厚大鼠左心室肌NO含量减少。内源性NO可能通过非cGMP依赖机制减轻压力超负荷引起的心肌肥厚。在培养的新生大鼠心肌细胞中血管紧张素Ⅱ(AⅡ)、内皮素-1(ET-1)和去甲肾上腺素(NE)通过各自的受体和偶连的G蛋白,一方面引起心肌细胞肥大;另一方面抑制一氧化氮合酶(NOS)活性和NO生成。心肌细胞和非心肌  相似文献   

4.
Cardiac fibrosis is characterized by aberrant proliferation of cardiac fibroblasts and exaggerated deposition of extracellular matrix (ECM) in the myocardial interstitial, and ultimately impairs cardiac function. It is still controversial whether microRNA-21 (miR-21) participates in the process of cardiac fibrosis. Our previous study confirmed that transforming growth factor beta receptor III (TGFβRIII) is a negative regulator of TGF-β pathway. Here, we aimed to decipher the relationship between miR-21 and TGFβRIII in the pathogenic process of myocardial fibrosis. We found that TGF-β1 and miR-21 were up-regulated, whereas TGFβRIII was down-regulated in the border zone of mouse hearts in response to myocardial infarction. After transfection of miR-21 into cardiac fibroblasts, TGFβRIII expression was markedly reduced and collagen content was increased. And, luciferase results confirmed that TGFβRIII was a target of miR-21. It suggests that up-regulation of miR-21 could increase the collagen content and at least in part through inhibiting TGFβRIII. Conversely, we also confirmed that overexpression of TGFβRIII could inhibit the expression of miR-21 and reduce collagen production in fibroblasts. Further studies showed that overexpression of TGFβRIII could also deactivate TGF-β1 pathway by decreasing the expression of TGF-β1 and phosphorylated-Smad3 (p-Smad3). TGF-β1 has been proven as a positive regulator of miR-21. Taken together, we found a novel reciprocal loop between miR-21 and TGFβRIII in cardiac fibrosis caused by myocardial infarction in mice, and targeting this pathway could be a new strategy for the prevention and treatment of myocardial remodeling.  相似文献   

5.
6.
Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-coupled receptors, including protease-activated receptors (PARs), in the pathology of heart hypertrophy and failure. Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to myocardial infarction and heart remodeling after ischemia/reperfusion injury. In this study, we found that PAR-2 induced hypertrophic growth of cultured rat neonatal cardiomyocytes in a MEK1/2 and p38 dependent manner. In addition, PAR-2 activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine MCP-1. Furthermore, cardiomyocyte-specific overexpression of PAR-2 in mice induced heart hypertrophy, cardiac fibrosis, inflammation and heart failure. Finally, in a mouse model of myocardial infarction induced by permanent ligation of the left anterior descending coronary artery, PAR-2 deficiency attenuated heart remodeling and improved heart function independently of its contribution to the size of the initial infarct. Taken together, our data indicate that PAR-2 signaling contributes to the pathogenesis of hypertrophy and heart failure.  相似文献   

7.
BackgroundApigenin can reduce cardiomyocyte hypertrophy by downregulating hypoxia inducible factor-1 alpha (HIF-1α) expression. However, its effects on cardiac fibroblasts (CFs) and its exact inhibitory molecular mechanisms on HIF-1α remain unclear.PurposeThis study aims to examine the effects of apigenin on cell proliferation and differentiation, microRNA-122-5p (miR-122-5p) expression, and HIF-1α-mediated Smad signaling pathway in transforming growth factor beta 1 (TGF-β1)-stimulated CFs and cardiac fibrosis and to investigate the relationship between miR-122-5p and HIF-1α.MethodsThe TGF-β1-stimulated CFs, the combination of TGF-β1-stimulated and miR-122-5p mimic-transfected CFs, the combination of TGF-β1-stimulated and miR-122-5p inhibitor-transfected CFs, and the isoproterenol-induced cardiac fibrotic mice were used and treated with or without apigenin. The recombinant lentiviruses overexpressing HIF-1α vector and miR-122-5p mimic were co-transfected to observe their interaction. Related mRNA and protein expressions and myocardial collagen were determined. The luciferase reporter gene that contains HIF-1α wild type or mutant type 3’-UTR was used, and the luciferase activity was determined to verify the direct link between miR-122-5p and HIF-1α.ResultsIn the TGF-β1-stimulated CFs, apigenin treatment increased the miR-122-5p and Smad7 expressions and decreased the HIF-1α, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 expressions. Similar and inverse results were observed in the miR-122-5p mimic- and inhibitor-transfected CFs, respectively. Moreover, the miR-122-5p mimic could antagonize the effects of TGF-β1 in the TGF-β1 and miR-122-5p mimic-combined CFs, and the miR-122-5p inhibitor could enhance the effects of TGF-β1 in the TGF-β1 and miR-122-5p inhibitor-combined CFs. In the two aforementioned cell models, the addition of apigenin could further enhance the effects of miR-122-5p mimic and partially reverse the effects of miR-122-5p inhibitor. After treatment of HIF-1α-transfected CFs with miR-122-5p mimic, the HIF-1α expression decreased. Further study confirmed that HIF-1α was a direct target of miR-122-5p. Apigenin also decreased the myocardial collagen accumulation in cardiac fibrotic mice.ConclusionApigenin could suppress the differentiation and collagen synthesis of TGF-β1-stimulated CFs and mouse cardiac fibrosis, and its mechanisms were related to the increment of miR-122-5p expression and subsequent downregulation of HIF-1α expression via direct interaction, which might finally result in the decrements of Smad2/3 and p-Smad2/3 expressions and increment of Smad7 expression.  相似文献   

8.
The Mas protooncogene encodes a G protein-coupled receptor that has been described as a functional receptor for the cardioprotective fragment of the renin-angiotensin system (RAS), Angiotensin (Ang)-(1-7). The aim of this current study was to evaluate the responsiveness of Mas expression in hearts during different physiological and pathological conditions in rats. Physical training was considered a physiological condition, while isoproterenol-induced hypertrophy, myocardial infarction and DOCA-salt model of hypertension were used as pathological models of heart injury. The expression of Mas was analyzed by western blotting. Although swim-trained rats presented significant cardiac hypertrophy, our physical training protocol was unable to induce changes in the expression of Mas. On the other hand, cardiac hypertrophy and damage elicited by isoproterenol treatment led to a reduction in Mas expression. Myocardial infarction also significantly decreased the expression of Mas after 21 days of myocardial ischemia. Additionally, Mas expression levels were increased in hearts of DOCA-salt rats. Our present data indicate that Mas expression is responsive to different pathological stimuli, thereby suggesting that Mas receptor is involved in the homeostasis of the heart, as well as in the establishment and progression of cardiac diseases.  相似文献   

9.
Pathological hypertrophy contributes to heart failure and there is not quite effective treatment to invert this process. Isosteviol has been shown to protect the heart against ischaemia-reperfusion injury and isoproterenol-induced cardiac hypertrophy, but its effect on pressure overload-induced cardiac hypertrophy is still unknown. Pressure overload induced by transverse aortic constriction (TAC) causes cardiac hypertrophy in rats to mimic the pathological condition in human. This study examined the effects of isosteviol sodium (STVNa) on cardiac hypertrophy by the TAC model and cellular assays in vitro. Cardiac function test, electrocardiogram analysis and histological analysis were conducted. The effects of STVNa on calcium transient of the adult rat ventricular cells and the proliferation of neonatal rat cardiac fibroblasts were also studied in vitro. Cardiac hypertrophy was observed after 3-week TAC while the extensive cardiac dysfunction and electronic remodelling were observed after 9-week TAC. Both STVNa and sildenafil (positive drug) treatment reversed the two process, but STVNa appeared to be more superior in some aspects and did not change calcium transient considerably. STVNa also reversed TAC-induced cardiac fibrosis in vivo and TGF-β1-induced fibroblast proliferation in vitro. Moreover, STVNa, but not sildenafil, reversed impairment of the autonomic nervous system induced by 9-week TAC.  相似文献   

10.
11.
Transforming growth factor-β (TGF-β) signaling pathway is involved in fibrosis in most, if not all forms of cardiac diseases. Here, we evaluate a positive feedback signaling the loop of TGF-β1/promyelocytic leukemia (PML) SUMOylation/Pin1 promoting the cardiac fibrosis. To test this hypothesis, the mice underwent transverse aortic constriction (3 weeks) were developed and the morphological evidence showed obvious interstitial fibrosis with TGF-β1, Pin1 upregulation, and increase in PML SUMOylation. In neonatal mouse cardiac fibroblasts (NMCFs), we found that exogenous TGF-β1 induced the upregulation of TGF-β1 itself in a time- and dose-dependent manner, and also triggered the PML SUMOylation and the formation of PML nuclear bodies (PML-NBs), and consequently recruited Pin1 into nuclear to colocalize with PML. Pharmacological inhibition of TGF-β signal or Pin1 with LY364947 (3 μM) or Juglone (3 μM), the TGF-β1-induced PML SUMOylation was reduced significantly with downregulation of the messenger RNA and protein for TGF-β1 and Pin1. To verify the cellular function of PML by means of gain- or loss-of-function, the positive feedback signaling loop was enhanced or declined, meanwhile, TGF-β-Smad signaling pathway was activated or weakened, respectively. In summary, we uncovered a novel reciprocal loop of TGF-β1/PML SUMOylation/Pin1 leading to myocardial fibrosis.  相似文献   

12.
Ischemia/reperfusion injury is a major cause of myocardial death. In the heart, cardiac fibroblasts play a critical role in healing post myocardial infarction. TGF-β1 has shown cardioprotective effects in cardiac damage; however, if TGF-β1 can prevent cardiac fibroblast death triggered by ischemia/reperfusion is unknown. Therefore, we test this hypothesis, and whether the canonical and/or non-canonical TGF-β1 signaling pathways are involved in this protective effect. Cultured rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion. Cell viability was analyzed by trypan blue exclusion and propidium iodide by flow cytometry. The processing of procaspases 8, 9 and 3 to their active forms was assessed by Western blot, whereas subG1 population was evaluated by flow cytometry. Levels of total and phosphorylated forms of ERK1/2, Akt and Smad2/3 were determined by Western blot. The role of these signaling pathways on the protective effect of TGF-β1 was studied using specific chemical inhibitors. Simulated ischemia over 8 h triggers a significant cardiac fibroblast death, which increased by reperfusion, with apoptosis actively involved. These effects were only prevented by the addition of TGF-β1 during reperfusion. TGF-β1 pretreatment increased the levels of phosphorylated forms of ERK1/2, Akt and Smad2/3. The inhibition of ERK1/2, Akt and Smad3 also blocked the preventive effects of TGF-β1 on cardiac fibroblast apoptosis induced by simulated ischemia/reperfusion. Overall, our data suggest that TGF-β1 prevents cardiac fibroblast apoptosis induced by simulated ischemia–reperfusion through the canonical (Smad3) and non canonical (ERK1/2 and Akt) signaling pathways.  相似文献   

13.
Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor β1–induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression–induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.  相似文献   

14.
15.
Myocardial ischaemia is associated with an exacerbated inflammatory response, as well as with a deregulation of intercellular communication systems. Macrophages have been implicated in the maintenance of heart homeostasis and in the progression and resolution of the ischaemic injury. Nevertheless, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages remain largely underexplored. Extracellular vesicles (EVs) have emerged as key players of cell‐cell communication in cardiac health and disease. Hence, the main objective of this study was to characterize the impact of cardiomyocyte‐derived EVs upon macrophage activation. Results obtained demonstrate that EVs released by H9c2 cells induced a pro‐inflammatory profile in macrophages, via p38MAPK activation and increased expression of iNOS, IL‐1β and IL‐6, being these effects less pronounced with ischaemic EVs. EVs derived from neonatal cardiomyocytes, maintained either in control or ischaemia, induced a similar pattern of p38MAPK activation, expression of iNOS, IL‐1β, IL‐6, IL‐10 and TNFα. Importantly, adhesion of macrophages to fibronectin was enhanced by EVs released by cardiomyocytes under ischaemia, whereas phagocytic capacity and adhesion to cardiomyocytes were higher in macrophages incubated with control EVs. Additionally, serum‐circulating EVs isolated from human controls or acute myocardial infarction patients induce macrophage activation. According to our model, in basal conditions, cardiomyocyte‐derived EVs maintain a macrophage profile that ensure heart homeostasis, whereas during ischaemia, this crosstalk is affected, likely impacting healing and post‐infarction remodelling.  相似文献   

16.
17.
Many of the cardiovascular benefits of fish oil result from the antiarrhythmic actions of the n-3 polyunsaturated lipids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The beneficial effects of DHA/EPA in patients with coronary artery disease and myocardial infarction may also result from modulation of the myocardial hypertrophic response. Hypertrophy was assessed in neonatal cardiomyocytes exposed to phenylephrine (PE) by measuring cell surface area, total protein synthesis ((14)C leucine incorporation), and the organization of sarcomeric alpha-actinin and by monitoring expression of atrial natriuretic factor (ANF). We report that PE induced a twofold increase in cell surface area and protein synthesis in cardiomyocytes. The hypertrophied cardiomyocytes also exhibited increased expression of ANF in perinuclear regions and organization of sarcomeric alpha-actinin into classical z-bands. Treatment of cardiomyocytes with 5 microM DHA effectively prevented PE-induced hypertrophy as shown by inhibition of surface area expansion and protein synthesis, inhibition of ANF expression, and prevention of alpha-actinin organization into z-bands. DHA treatment prevented PE-induced activation of Ras and Raf-1 kinase. The upstream inhibition of Ras --> Raf-1 effectively prevented translocation and nuclear localization of phosphorylated extracellularly regulated kinase 1 and 2 (Erk1/2). These effects consequently led to inhibition of nuclear translocation, and hence, activation of the downstream signaling enzyme p90 ribosomal S6 kinase (p90(rsk)). These results indicate that PE-induced cardiac hypertrophy can be minimized by DHA. Our results suggest that inhibition of Ras --> Raf-1 --> Erk1/2 --> p90(rsk) --> hypertrophy is one possible pathway by which DHA can inhibit cardiac hypertrophy. In vivo studies are needed to confirm these in vitro effects of DHA.  相似文献   

18.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   

19.
糖尿病心肌病(diabetic cardiomyopathy, DCM)是指发生于糖尿病患者,不能用冠心病、高血压性心脏病及其他心脏病变来解释的心肌疾病。目前,DCM的病因和发病机制尚未完全阐明,且缺乏特异性治疗手段。中药管花肉苁蓉提取物松果菊苷(echinacoside, ECH)对心肌细胞具有保护作用。以db/m小鼠为正常对照组(db/m组),db/db小鼠分为模型组(db/db组)和ECH干预组(db/db+ECH组),探讨了ECH对糖尿病db/db小鼠心肌的影响及机制。db/db+ECH组小鼠给予松果菊苷灌胃,db/m组和db/db组小鼠给予0.9%氯化钠溶液灌胃。心脏超声观察心脏功能,Masson染色观察组织胶原纤维含量,逆转录聚合酶链式反应检测Ⅰ型胶原和Ⅲ型胶原mRNA的表达,蛋白质免疫印迹技术检测转化生长因子-β1(transforming growth factor-β1, TGF-β1)、phospho-Smad2(p-Smad2)和phospho-Smad3(p-Smad3)的表达。结果显示,ECH能够改善db/db小鼠左心室肥大和心脏功能,降低胶原沉积(P<...  相似文献   

20.
Liu Y  Qi H  Wang Y  Wu M  Cao Y  Huang W  Li L  Ji Z  Sun H 《Phytomedicine》2012,19(8-9):693-698
To evaluate the cardioprotective effect of allicin (AL) on myocardial injury of streptozotocin (STZ)-induced diabetic rats and to further explore its underlying mechanisms. Hyperglycemia was induced in rats by single intraperitoneal injection of STZ (40 mg/kg). Three days after STZ induction, the hyperglycemic rats (plasma glucose levels ≥ 16.7 mmol/l) were treated with AL by intraperitoneal injection at the doses of 4 mg/kg, 8 mg/kg, and 16 mg/kg daily for 28 days. The fasting blood glucose levels were measured on every 7th day during the 28 days of treatment. The body weight, blood glucose, and parameter of cardiac function were detected after 4 weeks to study the cardioprotective effects of AL on diabetic rats in vivo. The apoptotic index of cardiomyocytes was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The expressions of Fas, Bcl-2, CTGF, and TGF-β(1) protein were studied by immunohistochemistry. Laser scanning confocal microscopy technique was utilized to observe the effects of AL on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular cardiomyocytes. AL at the doses of 4 mg/kg, 8 mg/kg, and 16 mg/kg significantly reduced blood glucose levels in a dose-dependent manner and increased body weight as well compared with the model group. Hemodynamic parameters including left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximum rate of left ventricular pressure rise and fall (+dp/dtmax and -dp/dtmax) were significantly restored back to normal levels in AL-treated (8 mg/kg and 16 mg/kg) rats compared with diabetic model rats. AL markedly inhibited cardiomyocyte apoptosis induced by diabetic cardiac injury. Further investigation revealed that this inhibitory effect on cell apoptosis was mediated by increasing anti-apoptotic protein Bcl-2 and decreasing pro-apoptotic protein Fas. Additional experiments demonstrated AL abrogated myocardial fibrosis by blocking the expressions of CTGF and TGF-β(1) protein. AL shows protective action on myocardial injury in diabetic rats. The possible mechanisms were involved in reducing blood glucose, correcting hemodynamic impairment, reducing Fas expression, activating Bcl-2 expression, decreasing intracellular calcium overload, inhibiting the expressions of TGF-β(1) and CTGF, and further improving cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号