首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown.

Methods

In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1–4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry.

Results

The results in this study show that (i) affinities of the peptides are in the order hPLSCR1  > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families.

Conclusions

Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif.

General significance

Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.  相似文献   

2.

Purpose

Studies investigating the association between PTPN22 gene C1858T polymorphism and type 1 diabetes (T1D) susceptibility among Caucasian population have reported conflicting results. To investigate this inconsistency, we performed a meta-analysis of all available studies dealing with the relationship between the PTPN22 C1858T polymorphism and T1D.

Methods

Databases including PubMed, Web of Science, and EMBASE were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association.

Results

In total, 33 population-based studies with 22, 485 cases and 35, 292 controls, 9 family-based studies involving 7276 families were included. Under the random-effects model, the per-allele overall OR of the C1858T polymorphism for T1D was 1.89 (95% CI: 1.76–2.02, P < 10− 5) by pooling all available case–control studies. In addition, we found significant evidence for overtransmission of the risk T allele in family-based studies (overall OR TDT = 1.58, 95% CI: 1.43–1.74; P < 10− 5). The summary OR from case–control and family-based association studies was 1.81 (95% CI: 1.70–1.93, P < 10− 5).

Conclusions

In conclusion, this meta-analysis suggests that C1858T polymorphism in PTPN22 is associated with elevated T1D risk among Caucasian population.  相似文献   

3.
4.

Aims

This experiment investigated the effects of sub-chronic aluminum chloride (AlCl3) exposure on rat ovaries.

Main methods

Eighty female Wistar (5 weeks old) rats, weighed 110–120 g, were randomly divided into four treatment groups: control group (CG), low-dose group (LG, 64 mg/kg BW AlCl3), mid-dose group (MG, 128 mg/kg BW AlCl3) and high-dose group (HG, 256 mg/kg BW AlCl3). The AlCl3 was administered in drinking water for 120 days. The ovarian ultrastructure was observed. The activities of acid phosphatase (ACP), alkaline phosphatase (ALP), succinate dehydrogenase (SDH), Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase, the contents of Fe, Cu and Zn, and the protein expression of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in the ovary were determined.

Key findings

The results showed that the structure of the ovary was disrupted, the activities of ALP, ACP, SDH, Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase, the contents of Zn, Fe and the protein expression of FSHR and LHR were lowered, and the content of Cu was increased in AlCl3-treated rats than those in control.

Significance

The results indicate that sub-chronic AlCl3 exposure caused the damage of the ovarian structure, the disturbed metabolism of Fe, Zn and Cu and the decreased activities of Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase in the ovary, which could result in suppressed energy supply in the ovary. A combination of suppression of energy supply and reduction of expression of FSHR and LHR could inhibit ovulation and corpus luteum development, leading to infertility in female rats.  相似文献   

5.

Aims

The aim of this study is to investigate the vasorelaxant effect of 16-O-acetyldihydroisosteviol (ADIS) and its underlying mechanisms in isolated rat aorta.

Main methods

Rat aortic rings were isolated, suspended in organ baths containing Kreb's solution, maintained at 37 °C, and mounted on tungsten wire and continuously bubbled with a mixture of 95% O2 and 5% CO2 under a resting tension of 1 g. The vasorelaxant effects of ADIS were investigated by means of isometric tension recording experiment.

Key findings

ADIS (0.1 μM–3 mM) induced relaxation of aortic rings pre-contracted by phenylephrine (PE, 10 μM) and KCl (80 mM) with intact-endothelium (Emax = 79.26 ± 3.74 and 79.88 ± 3.79, respectively) or denuded-endothelium (Emax = 88.05 ± 3.69 and 78.22 ± 6.86, respectively). In depolarization Ca2+-free solution, ADIS inhibits calcium chloride (CaCl2)-induced contraction in endothelium-denuded rings in a concentration-dependent manner. In addition, ADIS attenuates transient contractions in Ca2+-free medium containing EGTA (1 mM) induced by PE (10 μM) and caffeine (20 mM). By contrast, relaxation was not affected by tetraethylammonium (TEA, 5 mM), 4-aminopyridine (4-AP, 1 mM), glibenclamide (10 μM), barium chloride (BaCl2, 1 mM), and 1H-[1,2,3]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, 1 μM).

Significance

These findings reveal the vasorelaxant effect of ADIS, through endothelium-independent pathway. It acts as a Ca2 + channel blocker through both intracellular and extracellular Ca2 + release.  相似文献   

6.

Objective

To investigate the relationship between the resistin intronic + 299G/A polymorphism and nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM).

Methods

We selected 738 T2DM patients, including 395 with NAFLD and 343 without fatty liver disease, as well as 279 healthy control individuals, and analyzed their resistin + 299G/A polymorphism genotype by polymerase chain reaction–restriction fragment length polymorphism.

Results

Plasma resistin levels in T2DM patients with NAFLD were at the highest (P < 0.05). The frequency of AA genotype at the + 299 site of the resistin gene in patients with concurrent T2DM combined with NAFLD was significantly different from that in the control (P < 0.05). The AA genotype was found to be associated with a 1.80-fold increased risk for T2DM combined with NAFLD, 2.05-fold increased risk for obesity and 2.37-fold increased risk for obesity of abdominal type compared to the GG (P < 0.05, respectively). The multivariate non-conditional logistic regression model analysis further shows that the AA genotype is a risk factor for the development of NAFLD in T2DM patients (OR, 2.32; 95% CI, 1.05–4.68; P < 0.05).

Conclusion

The resistin + 299AA genotype may be associated with increases in the risk of the NAFLD development in T2DM patients.  相似文献   

7.

Background

Recurrent pregnancy loss is an important clinical problem. Recently, high-level homocysteine in blood has been considered as a possible cause. Genetic polymorphisms in methylenetetrahydrofolate reductase (MTHFR) have been proved to be the common hereditary factors of high-level homocysteine. The association between MTHFR polymorphisms and unexplained recurrent pregnancy loss (URPL) has been reported but with controversial results. The purpose of present study is to collect and analyze published available data, and evaluate the association between MTHFR polymorphisms and URPL.

Methods

A meta-analysis was performed to examine the association between MTHFR polymorphisms (C677T and A1298C) and URPL. Odds ratio (OR) and its 95% confidence interval (CI) were used in each study of genotype and allele contrast.

Result(s)

MTHFR C677T: The analysis included 3559 URPL cases and 5097 healthy controls. Overall random-effects odds ratios (ORs) were 1.68 (95% CI, 1.32–2.13; P < 0.0001) for TT versus total genotypes, 1.35 (95% CI, 1.04–1.76; P = 0.0224) for TT and CT genotype combined versus total genotypes and 1.34 (95%CI, 1.13–1.58; P < 0.0001) for T versus total alleles. Although significant heterogeneity was found in C677T, it became weaker in the East Asian subgroup and the mixed subgroup when separated by ethnic subgroups. The results showed significant association between MTHFR C677T and URPL in the East Asian subgroup (ORs 2.11 for TT versus total genotype (P = 0.0004) and 1.53 for T versus total alleles (P < 0.0001)) and in the mixed subgroup (ORs 3.47 for TT versus total genotypes (P < 0.0001) and 1.80 for T versus total alleles (P < 0.027)), but not in Caucasian subgroup.

MTHFR A1298C

The study involved 1163 URPL cases and 1061 healthy controls. Overall random-effects odds ratios (ORs) were 1.37 (95% CI, 0.71–2.67; P = 0.3456) for CC versus total genotypes, 1.16 (95%CI, 0.98–1.38; P = 0.0833) for CC + AC versus total genotypes and 1.04 (95%CI, 0.84–1.29; P = 0.7112) for C versus total alleles. No significant association between MTHFR A1298C polymorphism and URPL was found.

Conclusions

These results indicate a significant association between MTHFR C677T mutation and URPL in the East Asian subgroup and mixed subgroup, but no significance in MTHFR A1298C mutation.  相似文献   

8.

Background

The major cytoskeletal protein of most cells is actin, which polymerizes to form actin filaments (F-actin). Each actin monomer (G-actin) contains a divalent alkaline earth metal ion (in vivo Mg2 +; in vitro usually Ca2 +) as a cofactor that is crucial for protein polymerization. Prior to this study, however, whether or not other types of metal ions can play the same role as Mg2 + or Ca2 + in actins remains unknown.

Methods

A new actin from the gills of oyster (AGO) was prepared and characterized by protein purification techniques, SDS- and native-PAGE, and LC–MS\MS for the first time. The property of this protein was studied by CD, fluorescence and UV/vis spectroscopy, laser light scattering, and TEM.

Results

AGO is a monomer with a MW of ~ 42 kDa. AGO is unique among all known actins in that Zn2 + is only a naturally binding metal in the protein, and that one native AGO molecule binds 8 zinc ions, which can be removed by EDTA treatment at pH 7.2. The presence of zinc has a great effect on the secondary and tertiary structure of the protein. Correlated with such effect is that these zinc ions in native AGO facilitate protein polymerization, whereas removal of zinc ions from native AGO results in a loss of such polymerization property.

Conclusions

The present work demonstrates that AGO is a novel zinc-binding protein with high capacity, and high selectivity.

General significance

This work extends an understanding of the function of zinc and actin.  相似文献   

9.

Background

DNase antibodies can play an important role in the pathogenesis of different autoimmune pathologies.

Methods

An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with systemic lupus erythematosus (SLE) was used. The small pools of phage particles displaying DNA binding light chains with different for DNA were isolated by affinity chromatography on DNA-cellulose and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 28 kDa). Forty-five of 451 individual colonies were randomly chosen for a study of MLChs with DNase activity. The clones were expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography followed by gel filtration, and studied in detail.

Results

Fifteen of 45 MLChs efficiently hydrolyzed DNA, and fourteen of them demonstrated various optimal concentrations of KCl or NaCl in a 1–100 mM range and showed one or two pH optima in a 4.8–9.1 range. All MLChs were dependent on divalent metal cations: the ratio of relative DNase activity in the presence of Mn2 +, Ca2 +, Mg2 +, Ni2 +, Zn2 +, Cu2 +, and Co2 + was individual for each MLCh preparation. Fourteen MLChs demonstrated a comparable affinity for DNA (260–320 nM), but different kcat values (0.02–0.7 min− 1).

Conclusions

These observations suggest an extreme diversity of DNase abzymes from SLE patients.

General significance

SLE light chain repertoire can serve as a source of new types of DNases.  相似文献   

10.

Aims

Calmodulin (CaM) plays a key role in modulating channel gating in ryanodine receptor (RyR2). Here, we investigated (a) the pathogenic role of CaM in the channel disorder in CPVT and (b) the possibility of correcting the CPVT-linked channel disorder, using knock-in (KI) mouse model with CPVT-associated RyR2 mutation (R2474S).

Methods and results

Transmembrane potentials were recorded in whole cell current mode before and after pacing (1–5 Hz) in isolated ventricular myocytes. CaM binding was assessed by incorporation of exogenous CaM fluorescently labeled with HiLyte Fluor® in saponin-permeabilized myocytes. In the presence of cAMP (1 μM) the apparent affinity of CaM binding to the RyR decreased in KI cells (Kd: 140–400 nM), but not in WT cells (Kd: 110–120 nM). Gly-Ser-His-CaM (GSH-CaM that has much higher RyR-binding than CaM) restored normal binding to the RyR of cAMP-treated KI cells (140 nM). Neither delayed afterdepolarization (DAD) nor triggered activity (TA) were observed in WT cells even at 5 Hz pacing, whereas both DAD and TA were observed in 20% and 12% of KI cells, respectively. In response to 10 nM isoproterenol, only DAD (but not TA) was observed in 11% of WT cells, whereas in KI cells the incidence of DAD and TA further increased to 60% and 38% of cells, respectively. Addition of GSH-CaM (100 nM) to KI cells decreased both DADs and TA (DAD: 38% of cells; TA: 10% of cells), whereas CaM (100 nM) had no appreciable effect. Addition of GSH-CaM to saponin-permeabilized KI cells decreased Ca2+ spark frequency (+33% of WT cells), which otherwise markedly increased without GSH-CaM (+100% of WT cells), whereas CaM revealed much less effect on the Ca2+ spark frequency (+76% of WT cells). Then, by incorporating CaM or GSH-CaM to intact cells (with protein delivery kit), we assessed the in situ effect of GSH-CaM (cytosolic [CaM] = ∼240 nM, cytosolic [GSH-CaM] = ∼230 nM) on the frequency of spontaneous Ca2+ transient (sCaT, % of total cells). Addition of 10 nM isoproterenol to KI cells increased sCaT after transient 5 Hz pacing (37%), whereas it was much more attenuated by GSH-CaM (9%) than by CaM (26%) (P < 0.01 vs CaM).

Conclusions

Several disorders in the RyR channel function characteristic of the CPVT-mutant cells (increased spontaneous Ca2+ leak, delayed afterdepolarization, triggered activity, Ca2+ spark frequency, spontaneous Ca2+ transients) can be corrected to a normal function by increasing the affinity of CaM binding to the RyR.  相似文献   

11.
1.
This study examined expression of two primary transmembrane Ca2+ export proteins (plasma membrane Ca2+ ATPase, (PMCA); Na+/Ca2+ exchanger, sodium/calcium exchanger (NCX)) in epithelial (antennal gland, kidney) and non-epithelial (axial abdominal muscle) tissues of the freshwater crayfish Procambarus clarkii following exposure (28 days) to 4 °C (compared with control 23 °C).  相似文献   

12.

Purpose

A number of studies reported on associations of single nucleotide polymorphisms (SNPs) present in chromosome 9p21 with early-onset coronary artery disease (CAD). The present study was then undertaken to perform a meta-analysis of all the results published to date.

Methods

All studies of the 9p21 association with early-onset CAD that were published between 2007 and 2012 were retrieved from the PubMed database. RevMan 5.0 software was used to perform meta-analysis of the data that fulfilled the criteria for our meta-analysis. The effect size of four SNPs in the 9p21 region on early-onset CAD risk was assessed based on the odds ratios (ORs) with calculation of 95% confidence interval (CI).

Results

A total of 7123 subjects from 7 case–control studies were genotyped. Meta-analysis demonstrated disease association for rs2383207 (OR = 0.79, 95% CI 0.71–0.88, P < 0.0001), rs2383206 (OR = 1.17, 95% CI 1.10–1.25, P < 0.00001), rs10757278 (OR = 1.28, 95% CI 1.15–1.42, P < 0.00001), and rs10757274 (OR = 1.17, 95% CI 1.08–1.33, P = 0.02).

Conclusion

Genetic variation in the chromosome 9p21 region may contribute to the etiology of early-onset CAD although their effect size is rather small.  相似文献   

13.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

14.

Objective

Toll-like receptor 4 (TLR4) is an important lipo-polysaccharide (LPS) receptor in gastric epithelial cell signaling transduction and plays critical roles in the development and progression of gastric cancer (GC). We investigated the effects of TLR4 gene polymorphisms and gene–environmental interactions on the risk of GC in Northeastern China.

Methods

We genotyped two single-nucleotide polymorphisms (SNPs) in TLR4 (rs10116253 and rs1927911) in 217 GC patients and 294 cancer-free controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Odds ratio (OR) and 95% confidence intervals (CIs) were estimated by unconditional logistic-regression models.

Results

Individuals carrying CC genotype of rs10116253 and TT genotype of rs1927911 had a significantly decreased risk of GC (adjusted OR = 0.33, 95% CI 0.18–0.60, P < 0.001 and adjusted OR = 0.37, 95% CI 0.21–0.67, P = 0.001 respectively), compared with TT genotype of rs10116253 and CC genotype of rs1927911. In addition, the SNP effects were additive to the effects of some known environmental factors without any interaction between them in the susceptibility to GC.

Conclusion

Our data suggested that TLR4 gene polymorphisms may be associated with a decreased risk of GC in Chinese population. And these SNPs and their combined effects with environmental factors may be associated with the risk of GC.  相似文献   

15.

Aim

To analyze the effect of the two different versions of the manganese superoxide dismutase gene (SOD2) on sepsis. The SOD2 gene presents the 47C > T single nucleotide polymorphism (SNP; ID: rs4880) which produces MnSOD with different activities. The − 9Val MnSOD (47T allele) is less efficient than the − 9Ala version (47C allele). During sepsis there are abundance of ROS, high SOD2 expression and excess of H2O2 synthesis. High concentrations of H2O2 could affect the sepsis scenario and/or the sepsis outcome.

Methods

We determined the 47C > T single nucleotide polymorphism (SNP) frequencies in 529 critically ill patients with or without sepsis, facing outcome. To collect information on population frequencies, we obtained a pilot 47C > T genotypic and allelic frequencies in a random group of 139 healthy subjects.

Results

We compared the 47C allele carriers (47CC + 47CT genotypes) with 47TT homozygotes and noticed a significant association between 47C allele carriers and septic shock in septic patients (P = 0.025). With an adjusted binary multivariate logistic regression, incorporating 47C > T SNP and the main clinical predictors, we showed high SOFA scores [P < 0.001, OR = 9.107 (95% CI = 5.319–15.592)] and 47C allele [P = 0.011, OR = 2.125 (95% CI = 1.190–3.794)] were significantly associated with septic shock outcome. With this information we presented a hypothesis suggesting that this negative outcome from sepsis is possibly explained by effects on cellular stress caused by 47C allele.

Conclusion

In our population there was a significant higher frequency of septic shock in septic patients with the 47C allele of the SOD2 gene. This higher 47C allele frequency in septic patients with negative outcome could be explained by effects of higher activity MnSOD on cellular stress during the sepsis.  相似文献   

16.
The thermal sensitivity of metabolic performance in vertebrates requires a better understanding of the temperature sensitivity of cardiac function. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) is vital for excitation–contraction (E–C) coupling and intracellular Ca2+ homeostasis in heart cells. To better understand the thermal dependency of cardiac output in vertebrates, we present comparative analyses of the thermal kinetics properties of SERCA2 from ectothermic and endothermic vertebrates. We directly compare SR ventricular microsomal preparations using similar experimental conditions from sarcoplasmic reticulum isolated from cardiac tissues of mammals and fish. The experiments were designed to delineate the thermal sensitivity of SERCA2 and its role in thermal sensitivity Ca2+ uptake and E–C coupling. Ca2+ transport in the microsomal SR fractions from rabbit and bigeye tuna (Thunnus obesus) ventricles were temperature dependent. In contrast, ventricular SR preparations from coho salmon (Onchorhychus kisutch) were less temperature dependent and cold tolerant, displaying Ca2+ uptake as low as 5 °C. As a consequence, the Q10 values in coho salmon were low over a range of different temperature intervals. Maximal Ca2+ transport activity for each species occurred in a different temperature range, indicating species-specific thermal preferences for SERCA2 activity. The mammalian enzyme displayed maximal Ca2+ uptake activity at 35 °C, whereas the fish (tuna and salmon) had maximal activity at 30 °C. At 35 °C, the rate of Ca2+ uptake catalyzed by the bigeye tuna SERCA2 decreased, but not the rate of ATP hydrolysis. In contrast, the salmon SERCA2 enzyme lost its activity at 35 °C, and ATP hydrolysis was also impaired. We hypothesize that SERCA2 catalysis is optimized for species-specific temperatures experienced in natural habitats and that cardiac aerobic scope is limited when excitation–contraction coupling is impaired at low or high temperatures due to loss of SERCA2 enzymatic function.  相似文献   

17.
18.

Background

Polyunsaturated fatty acids (PUFAs) have antifungal properties, but the mode by which they induce their action is not always clear. The aim of the study was to investigate apoptosis as a mode of action of antifungal PUFAs (stearidonic acid, eicosapentaenoic acid and docosapentaenoic acid) which are inhibitory towards biofilm formation of C. albicans and C. dubliniensis.

Methods

Candida biofilms were grown in the absence or presence of 1 mM PUFAs (linoleic acid, stearidonic acid, eicosapentaenoic acid, docosapentaenoic acid) for 48 h at 37 °C. The effect of these PUFAs on the membrane fatty acid profile and unsaturation index, oxidative stress, mitochondrial transmembrane potential and apoptosis was evaluated.

Results

When biofilms of C. albicans and C. dubliniensis were exposed to certain PUFAs there was an increase in unsaturation index of the cellular membranes and accumulation of intracellular reactive oxygen species (ROS). This resulted in apoptosis, evidenced by reduced mitochondrial membrane potential and nuclear condensation and fragmentation. The most effective PUFA was stearidonic acid.

Conclusions

The resultant cell death of both C. albicans and C. dubliniensis is due to apoptosis.

General significance

Due to the increase in drug resistance, alternative antifungal drugs are needed. A group of natural antifungal compounds is PUFAs. However, understanding their mechanisms of action is important for further use and development of these compounds as antifungal drugs. This paper provides insight into a possible mode of action of antifungal PUFAs.  相似文献   

19.

Background

Signal peptides may be novel biomarkers in cardiovascular diseases.

Methods

We developed a novel immunoassay to the signal peptide of preproCNP (CNPsp) and used this to document circulating venous concentrations of CNPsp in normal healthy volunteers (n = 109), regional plasma CNPsp concentrations in patients undergoing clinically indicated catheterisation (n = 24) and temporal CNPsp concentrations in patients with ST-elevation myocardial infarction (STEMI) <4 h after symptom onset (n = 8). The structure/sequence of circulating CNPsp was confirmed by tandem mass spectrometry (MS/MS).

Results

In normal human plasma, CNPsp was detectable at levels higher than NT-proCNP (74 ± 17 vs. 20 ± 5.5 pmol/L). There was no correlation between NTproCNP and CNPsp, but plasma concentrations of sibling signal peptides – CNPsp and BNPsp – were strongly correlated (r = 0.532, P < 0.001). In patients undergoing catheterisation, there were significant arterio-venous step-ups in CNPsp concentrations across the heart (P < 0.01) and kidney (P < 0.01). Arterial concentrations of CNPsp significantly correlated with heart rate (r = 0.446, P < 0.05). In STEMI patients, plasma concentrations of CNPsp showed a biphasic elevation pattern between 6 and 12 h after symptom onset, with 12 h values significantly elevated (∼3-fold) compared with levels at presentation (P < 0.05). MS/MS verified circulating CNPsp to be preproCNP(14–23) and preproCNP(16–23) peptides.

Conclusions

This is the first report of a circulating preproCNP derived signal peptide. Given the clear cardiac and renal secretion profiles of CNPsp and its response in STEMI patients, further studies on potential biological functions and biomarker applications of CNPsp in cardiovascular disease are warranted.  相似文献   

20.
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (− 1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol L− 1) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol L− 1). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl, SO42−) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol L− 1) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol L− 1). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, − 1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats s− 1 at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号