首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The erythrocytes of 12-month old Sod1 −/− mice showed an increased level of reactive oxygen species (ROS), as estimated by the degree of dihydroethidine and dihydrorhodamine oxidation, and the increased level of Heinz bodies. No indices of severe oxidative stress were found in the red blood cells and blood plasma of Sod1 −/− mice as judged from the lack of significant changes in the levels of erythrocyte and plasma glutathione, plasma protein thiol and carbonyl groups and thiobarbituric-acid reactive substances in the blood plasma. However, a decreased erythrocyte lifespan, increased reticulocyte count and splenomegaly were noted, indicating the importance of superoxide dismutase for maintaining erythrocyte viability. The levels of erythrocyte ROS and Heinz bodies and the reticulocyte count were indistinguishable in Sod1 +/+ and Sod1 +/− mice, suggesting that a superoxide dismutase activity decrease to half of its normal value may be sufficient to secure the protective effects of the enzyme.  相似文献   

3.
Subacute myelo-optico-neuropathy (SMON) is a progressive neurological disorder affecting the spinal cord, peripheral nerves and optic nerves. Although it has been assumed that SMON was caused by intoxication of clioquinol, the mechanism underlying clioquinol-induced neurotoxicity is not fully understood. This study aimed to clarify the relevance of oxidative stress to clioquinol-induced neurotoxicity and the cause of the enhanced oxidative stress. Clioquinol induced cell death in human-derived neuroblastoma cell line, SH-SY5Y, in a dose-dependent manner. This process was accompanied by activation of caspase-3 and enhanced production of reactive oxygen species (ROS). We examined whether clioquinol inhibited the activity of superoxide dismutase-1 (SOD1), based on its metal chelating properties. Clioquinol inhibited activities of purified SOD1 in a dose-dependent manner. Cytosolic SOD activities were also inhibited in SH-SY5Y cells treated with clioquinol. Finally, addition of exogenous SOD1 to the culture significantly reduced enhanced ROS production and cell death induced by clioquinol in SH-SY5Y cells. These findings suggested that enhanced oxidative stress caused by inhibition of SOD1 undelay clioquinol-induced neurotoxicity and was relevant to the pathogenesis of SMON.  相似文献   

4.
Abstract

Objectives

The presence of inflammatory cells indicates the development of epithelial cell injury in nasal polyposis (NP) and the potential for production of high levels of reactive oxygen and nitrogen species. The aim of our study was to clarify the role of oxidative stress and antioxidant status in the deterioration accompanying NP.

Methods

Twenty patients (11 men) aged 47.2 ± 17.0 years with nasal polyps were included in the study. Twenty healthy subjects (7 men) aged 48.2 ± 15.3 years formed the control group. The erythrocyte activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and plasma nitric oxide (NO) concentrations were measured. An alkaline comet assay was used to determine the extent of blood lymphocyte DNA damage of oxidized purines as glicosylo-formamidoglicosylase (Fpg) sites, and oxidized pyrimidines as endonuclease III (Nth) sites.

Results

A significant increase of NO (P < 0.05) and non-significant decreases of SOD (P > 0.05), CAT (P > 0.05), and GPx (P > 0.05) were seen in NP patients compared to healthy controls. The level of blood lymphocyte oxidative DNA damage in NP patients was significantly higher compared to the control group (P = 0.01).

Discussion

The blood lymphocyte DNA damage level increased in patients with NP. Elevated DNA damage may be related to overproduction of reactive oxygen and nitrogen species and/or decreased antioxidant protection.  相似文献   

5.
6.
Diabetes patients often show increased production of reactive oxidative species (ROS) together with vascular complications. The presence of these ROS may lead to increased DNA damage in peripheral blood lymphocytes that may be revealed by the comet assay. To test whether DNA is damaged in diabetes, peripheral blood samples were taken from 30 control individuals and 63 diabetic patients (15 insulin dependent (IDDM) and 48 non-insulin dependent (NIDDM)) and the alkaline comet assay was used to evaluate background levels of DNA damage. Significant differences were detected between control and diabetic patients in terms of frequencies of damaged cells. The extend of DNA migration was greater in NIDDM patients by comparison with IDDM patients which might indicate that IDDM patients are handling more oxidative damage on a regular basis. Smoker individuals had higher frequencies of cells with migration by comparison with the non-smokers in both groups. Also, clear differences between patients on placebo and on Vitamin E supplementation for 12 weeks were observed on the basis of the extend of DNA migration during single cell gel electrophoresis.  相似文献   

7.
Inflammation is one of the leading causes of the many pathological states associated with oxidative stress. A crucial role in the development of inflammation-induced oxidative stress is played by reactive oxidant species (ROS), which are very difficult to detect in vivo. One of the most sensitive and definitive methods in the detection of ROS is electron spin resonance, especially as used in conjunction with spin trapping. Unfortunately, the commonly used nitrone spin traps have a very low efficacy for trapping superoxide radicals, and their radical adducts are not stable. To address this deficiency, we have developed negatively charged cyclic hydroxylamines such as 1-hydroxy-4-phosphonooxy-2,2,6,6-tetramethylpiperidine (PP-H) for the detection of reactive oxidant species as a diagnostic tool for extracellular inflammation-induced oxidative stress. We used inflammation induced by a bacterial endotoxin lipopolysaccharide (LPS) as a model. ROS formation was tested in cultured macrophages, in blood and in vivo. PP-H reacts with reactive oxidant species generating the stable nitroxide radical 4-phosphonooxy-TEMPO. It was shown that a 5-h treatment of macrophages with LPS (1 microg/ml) leads to a threefold increase in superoxide formation as demonstrated using superoxide dismutase. Formation of reactive oxidant species 5 h after LPS (1 mg/kg) treatment of Fischer rats was analyzed in arterial blood; formation of reactive oxidant species in LPS-treated animals increased by a factor of 2.2 and was dependent upon the LPS dose. Diphenyleneiodonium (0.1 mM) inhibited formation of LPS-stimulated reactive oxidant species by 80%. We suggest that this test could be used as a noninvasive diagnostic tool for inflammation-induced oxidative stress.  相似文献   

8.
The effect of consuming a low carotene diet (≈60 μg carotene/day) on oxidative susceptibility and superoxide dismutase (SOD) activity in women living in a metabolic research unit was evaluated. The diet had sufficient vitamins A, E, and C. The women ate the diet supplemented with 1500 μg/day β-carotene for 4 days (baseline), then the unsupplemented diet for 68 days (depletion), followed by the diet supplemented with > 15,000 μg/day carotene for 28 days (repletion). Production of hexanal, pentanal, and pentane by copper-oxidased plasma low density lipoproteins from carotene-depleted women was greater than their production of these compounds when repleted with carotene. Erythrocyte SOD activity was depressed in carotene-depleted women; it recovered with repletion. Thiobarbituric acid reactive substances in plasma of carotene-depleted women were elevated and diminished with repletion. Dietary carotene seems to be needed, not only as a precursor of vitamin A, but also to inhibit oxidative damage and decrease oxidation susceptibility.  相似文献   

9.
Apolipophorin-III (apoLp-III), a hemolymph protein that facilitates lipid transport in aqueous media in insects was recently shown to play a role in insect immune activation. Here, we report another novel possible function of apoLp-III in insects. To identify genes affected by apoLp-III expression in larvae, we decreased endogenous apoLp-III mRNA in Hyphantria cunea (Hc) through RNA interference; subsequently, we observed lower levels of antioxidant enzymes, including manganese superoxide dismutase (MnSOD), glutathione S-transferase, and immune proteins. Knockdown of Hc apoLp-III led to decreased MnSOD expression in fat body tissues and elevated superoxide anion levels in Hc fat body cells, suggesting that Hc apoLp-III is involved in the action and/or expression of antioxidant enzymes, especially MnSOD.  相似文献   

10.
To clarify the role of reactive oxygen species (ROS) in the aging process of amphibians, antioxidant enzyme activity and indexes of ROS damage were investigated biochemically using the livers of 3- and 10-year-old Rana nigromaculata frog males and females. Findings revealed no significant difference in survival rate between males and females. Antioxidant enzyme activity displayed an age-related decline. Superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activity in 10-year-old liver decreased 40-80% from 3-year-old liver levels. In contrast, urate oxidase activity in the 10-year-old liver increased more than 200% from 3-year-old liver levels. At the same time levels of ROS damage, including the concentration of inorganic peroxide and thiobarbituric acid reactive substances (TBARS), greatly increased with age. Liver catalase from 10-year-old frogs proved to be more susceptible to aminotriazole and urea, losing approximately 80% of its original activity after 30 min of treatment. It seems likely that liver catalase in older frogs has diverged from liver catalase in younger frogs through oxidative modification. These findings suggest that a decrease in the activity of antioxidant enzymes over time results in increased levels of ROS damage in the livers of older frogs.  相似文献   

11.
We investigated the effects of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on reactive oxygen species (ROS) and on oxidative DNA damage in vitro, as well as the effects of the main fluvastatin metabolites (M2, M3, and M4) and other inhibitors of the same enzyme, pravastatin and simvastatin. The hydroxyl radical and the superoxide anion scavenging activities of fluvastatin and its metabolites were evaluated using an electron spin resonance spectrometer. Fluvastatin and its metabolites showed superoxide anion scavenging activity in the hypoxanthine-xanthine oxidase system and a strong scavenging effect on the hydroxyl radical produced from Fenton's reaction. Protective effects of fluvastatin on ROS-induced DNA damage of CHL/IU cells were assessed using the single-cell gel electrophoresis assay. CHL/IU cells were exposed to either hydrogen peroxide or t-butylhydroperoxide. Fluvastatin and its metabolites showed protective effects on DNA damage as potent as the reference antioxidants, ascorbic acid, trolox, and probucol, though pravastatin and simvastatin did not exert clear protective effects. These observations suggest that fluvastatin and its metabolites may have radical scavenging activity and the potential to protect cells against oxidative DNA damage. Furthermore, ROS are thought to play a major role in the etiology of a wide variety of diseases such as cellular aging, inflammation, diabetes, and cancer development, so fluvastatin might reduce these risks.  相似文献   

12.
We have investigated the roles of reactive oxygen species (ROS) in bleomycin (BLM)-induced gene mutations in Chinese hamster ovary (CHO) cells using a superoxide dismutase (SOD) inhibitor, triethylenetetramine (TRIEN), and a SOD mimic, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), to lower and increase intracellular “SOD activity”, respectively. Pretreatment of CHO cells with TRIEN (1 mM) for 1 h enhanced the mutagenic response of BLM (5–50 μg/ml, 1 h treatment) in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in CHO cell clone K1-BH4 (CHO/HPRT assay) and the xanthine-guanine phosphoribosyltransferase (gpt) gene in a CHO-K1 cell derivative AS52 (AS52/GPT assay). Pretreatment with TEMPOL (1 mM) for 1 h decreased the BLM (20–100 μg/ml, 1 h treatment) mutagenicity in the AS52/GPT assay. The mutagenic response of BLM appears to be modulated by the intracellular level of ‘SOD activity’ and hence the intracellular level of ROS. These data provide further evidence for the involvement of ROS in bleomycin mutagenesis in mammalian cells.  相似文献   

13.
Superoxide dismutase (SOD) was studied in the agarophyte Gracilariopsis tenuifrons. Similar SOD activity (130 ± 9U mg-1) was observed in material from different regions of SouthAmerica, from different phases of the life cycle (gametophytes andtetrasporophytes), and from apical and basal sections of the thallus.In alga grown under a light-dark cycle, SOD activity in samples takenat different times exhibited a diurnal rhythm. The activity measured duringthe day phase was twice as much as during the night phase. This rhythm didnot persist under constant light, indicating light regulation of SOD activity.SOD activity was tested in algae submitted to different light intensities anddifferent wavelengths. It increased with the light intensity. The blue lightwavelength exerted a greater induction of SOD activity than other specificwavelengths.  相似文献   

14.
The anti-oxidant enzyme superoxide dismutase (SOD) has the potential for use as a therapeutic agent in the treatment of various diseases caused by reactive oxygen species. However, achieving this would be difficult without a suitable delivery system for SOD. We previously reported that PC-SOD, in which four molecules of a phosphatidylcholine (PC) derivative were covalently bound to each dimer of recombinant human CuZnSOD, was a high affinity for the cell membrane [14]. Here, we show that an octaarginine (R8) modified liposome equipped with PC-SOD (R8-LP (PC-SOD)) enhances its anti-oxidant effect. High-density R8-modified liposomes can stimulate macropinocytosis and are taken up efficiently by cells as demonstrated in a previous study [21]. Flow cytometry analyses showed that R8-LP (PC-SOD) was taken up by cells more efficiently than PC-SOD. Moreover, R8-LP (PC-SOD) liposomes were found to scavenge superoxide anions (O2) very efficiently. These results suggest that the efficient cytosolic delivery of PC-SOD by R8-modified liposomes would enhance the anti-oxidant effects of PC-SOD.  相似文献   

15.
    
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.  相似文献   

16.
Radical scavenging activities of flavonoids rutin, taxifolin, (-)-epicatechin, luteolin, and their complexes with transition metal (Fe2+, Fe3+, and Cu2+) towards superoxide were determined using illumination of riboflavin as source and NBT as detector of O*2-. The scavenger potencies of flavonoid metal complexes were significantly higher than those of the parent flavonoids. To elucidate the mechanism of this phenomenon, the rates of superoxide-dependent oxidation of flavonoids and their metal complexes in photochemical system with riboflavin were examined. It was found for the first time that flavonoids bound to metal ions were much less subjected to oxidation compared with those of free compounds. The findings directly demonstrate superoxide scavenging activity of metal ions in complexes with flavonoids and support earlier suggestions that flavonoid metal complexes may exhibit superoxide dismuting activity.  相似文献   

17.
The oxygenic phototrophic cyanobacterium Synechocystis sp. strain PCC 6803 inevitably evolves superoxide during photosynthesis. Synechocystis 6803 contains only one type of superoxide dismutase, designated as SodB; therefore, this protein plays an important role in preventing oxidative damages caused by light. Because there was no direct evidence that SodB in Synechocystis 6803 could be regulated by light, the relationship between SodB and light was investigated in the present study. The activity of SodB from the cells grown in continuous light culture was about 3.5-fold higher than that from the cells cultivated in continuous dark. Illumination maximally activated SodB within 12 h. The level of sodB mRNA increased 12-fold by light, and that of SodB protein proportionally. Therefore, the expression and activity of SodB from Synechocystis 6803 were dependent on the light.  相似文献   

18.
The embryo of oviparous species is confronted by a highly oxidative stress generating as it grows and must rely on effective antioxidant system for protection. Proteins of avian egg albumin have been suggested to play the major redox-modulatory role during embryo development. Recently, we found that ovotransferrin (OTf) undergoes distinct thiol-linked self-cleavage in a redox-dependent process. In this study, we explore that OTf is SOD mimic protein with a potent superoxide anion (O2) scavenging activity. The O2 scavenging activity was investigated using the natural xanthine/xanthine oxidase (X/XOD) coupling system. OTf exhibited O2 scavenging activity in a dose-dependent manner and showed remarkably higher scavenging activity than the known antioxidants, ascorbate or serum albumin. The isolated half-molecules of OTf exhibited higher scavenging activity than the intact molecule, whereas the N-lobe showed much greater activity. OTf dramatically quenched the O2 flux but had no effect on the urate production in the X/XOD system, indicating its unique specificity to scavenge O2 but not oxidase inhibition. Strikingly, metal-bound OTf exhibited greater O2 dismutation capacity than the apo-protein, ranging from moderate (Zn2+-OTf and Fe2+-OTf) to high (Mn2+-OTf and Cu2+-OTf) activity with the Cu2+-OTf being the most potent scavenger. In a highly sensitive fluorogenic assay, the metal-bound OTf exhibited significant increase in the rate of H2O2 production in the X/XOD reaction than the apo-OTf, providing evidence that Zn2+-, Mn2+- and Cu2+-OTf possess SOD mimic activity. This finding is the first to describe that OTf is an O2 scavenging molecule, providing insight into its novel SOD-like biological function, and heralding a fascinating opportunity for its potential candidacy as antioxidant drug.  相似文献   

19.
Single-cell gel electrophoresis (comet assay) is one of the most common methods used to measure oxidatively damaged DNA in peripheral blood mononuclear cells (PBMC), as a biomarker of oxidative stress in vivo. However, storage, extraction, and assay workup of blood samples are associated with a risk of artifactual formation of damage. Previous reports using this approach to study DNA damage in PBMC have, for the most part, required the isolation of PBMC before immediate analysis or freezing in cryopreservative. This is very time-consuming and a significant drain on human resources. Here, we report the successful storage of whole blood in ~ 250 μl volumes, at − 80 °C, without cryopreservative, for up to 1 month without artifactual formation of DNA damage. Furthermore, this blood is amenable for direct use in both the alkaline and the enzyme-modified comet assay, without the need for prior isolation of PBMC. In contrast, storage of larger volumes (e.g., 5 ml) of whole blood leads to an increase in damage with longer term storage even at − 80 °C, unless a cryopreservative is present. Our “small volume” approach may be suitable for archived blood samples, facilitating analysis of biobanks when prior isolation of PBMC has not been performed.  相似文献   

20.
Previous studies have reported a neuroprotective role for cellular prion protein (PrP(C)) against apoptosis induced by serum deprivation in an immortalized prion protein gene (Prnp)-deficient neuronal cell line, but the mechanisms remain unclear. In this study, to investigate the mechanisms by which PrP(C) prevents apoptosis, the authors compared apoptosis of Prnp(-/-) cells with that of Prnp(-/-) cells expressing the wild-type PrP(C) or PrP(C) lacking N-terminal octapeptide repeat region under serum-free conditions. Re-introduction of Prnp rescued cells from apoptosis, upregulated superoxide dismutase (SOD) activity, enhanced superoxide anion elimination, and inhibited caspase-3/9 activation. On the other hand, N-terminally truncated PrP(C) enhanced apoptosis accompanied by potentiation of superoxide production and caspase-3/9 activation due to inhibition of SOD. These results suggest that PrP(C) protects Prnp(-/-) cells from apoptosis via superoxide- and caspase-3/9-dependent pathways by upregulating SOD activity. Furthermore, the octapeptide repeat region of PrP(C) plays an essential role in regulating apoptosis and SOD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号