首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The region controlling translation of the cat gene, which codes for chloramphenicol acetyltransferase, has been varied structurally in a series of plasmids that place the gene under control of the lac promoter. These plasmid constructs have enabled study of the structural features that affect the efficiency of mRNA translation. Altering the potential for secondary structure formation within the translation control region caused a tenfold variation in the synthesis of CAT enzyme, whereas varying the distance between the Shine-Dalgarno sequence (SD) and the translation start codon from 7 to 13 bases did not significantly affect the yield of CAT. If the SD was situated in a region of mRNA that is capable of base pairing, the efficiency of translation was decreased; however, the translation start codon, AUG, can initiate translation efficiently even when located in a segment capable of duplex formation. Overlapping of the cat translation control region by translation initiated upstream markedly affected initiation of translation within the cat gene: out-of-frame overlapping translation reduced CAT production by 90%; in-frame overlapping translation prevented detectable initiation of protein synthesis at the cat gene translation start codon, and yielded only fusion proteins. The enzymatic activity of such proteins was influenced by the length of the adventitious peptide segment added to the amino-terminus of the CAT polypeptide.  相似文献   

7.
Motif analysis among 30 EH1 and EH2 epoxide hydrolases from Solanaceaeous plants showed differences primarily in the lid region around the catalytic site. Based on in silico models of 3D structures, EH1 proteins lack a catalytic triad because of the orientation of one of the conserved lid tyrosines, while the orientation of that tyrosine in EH2 proteins fomed a catalytic triad inside a hydrophobic tunnel. Two similar EH2 protein genes from Nicotiana benthamiana, NbEH2.1 and NbEH2.2, have a predicted peroxisomal targeting sequence, catalytic triad, and structural similarities to a potato cutin monomer-synthesizing epoxide hydrolase. NbEH2.1 expression increased with infections by the hemibiotrophs, Colletotrichum destructivum, Colletotrichum orbiculare or Pseudomonas syringae pv. tabaci only during their biotrophic phases, while there was only a slight increase during the hypersensitive response to P. syringae pv. tabaci (avrPto). In contrast, among the four pathogens, NbEH2.2 expression increased only in response to P. syringae pv. tabaci. Virus-induced gene silencing of NbEH2.1 significantly affected only the interaction with C. destructivum, resulting in a delay in the appearance of necrosis that may be related to its biotrophic phase being restricted to single epidermal cells, which is unique among these pathogens. These results differed from that of a previously reported EH1 gene of N. benthamiana for these interactions, demonstrating specialization among EH genes in basal resistance.  相似文献   

8.
9.
10.
Three transgenic European pear (Pyrus communis L.) lines with reduced spermidine synthase (SPDS) expression and spermidine (Spd) titers were developed using a construct containing an apple SPDS gene (MdSPDS1) in antisense orientation. After exposure to either salt or cadmium stress, growth inhibition was more severe in the antisense lines than in the wild-type (WT). The antioxidant system, as shown by glutathione (GSH) content, activity of glutathione reductase (GR) and superoxide dismutase (SOD), and proline accumulation, was not effectively induced under stress in the antisense lines as compared with the WT. The reduction in antioxidant system function in the antisense lines was accompanied by a greater accumulation of malondialdehyde (MDA), an indicator of lipid peroxidation. Growth inhibition, Spd level, and parameters indicative of the antioxidant system were significantly ameliorated by exogenous Spd application. Under either salt or cadmium stress, GSH content, GR and SOD activity, and proline accumulation were positively correlated with Spd, putrescine (Put), and total polyamine titers. Conversely, MDA level showed a significantly negative correlation with these polyamines under both stress conditions. Thus, the responses to stress treatments were first identified in the SPDS antisense European pears, and the results provide further evidence for the important role of polyamines in both salt and cadmium stress tolerance, in which the polyamines act, at least in part, by influencing the antioxidant system.  相似文献   

11.
12.
13.
Bimolecular fluorescence complementation (BiFC) represents one of the most advanced and powerful tools for studying and visualizing protein-protein interactions in living cells. In this method, putative interacting protein partners are fused to complementary non-fluorescent fragments of an autofluorescent protein, such as the yellow spectral variant of the green fluorescent protein. Interaction of the test proteins may result in reconstruction of fluorescence if the two portions of yellow spectral variant of the green fluorescent protein are brought together in such a way that they can fold properly. BiFC provides an assay for detection of protein-protein interactions, and for the subcellular localization of the interacting protein partners. To facilitate the application of BiFC to plant research, we designed a series of vectors for easy construction of N-terminal and C-terminal fusions of the target protein to the yellow spectral variant of the green fluorescent protein fragments. These vectors carry constitutive expression cassettes with an expanded multi-cloning site. In addition, these vectors facilitate the assembly of BiFC expression cassettes into Agrobacterium multi-gene expression binary plasmids for co-expression of interacting partners and additional autofluorescent proteins that may serve as internal transformation controls and markers of subcellular compartments. We demonstrate the utility of these vectors for the analysis of specific protein-protein interactions in various cellular compartments, including the nucleus, plasmodesmata, and chloroplasts of different plant species and cell types.  相似文献   

14.
15.
Nziengui H  Bouhidel K  Pillon D  Der C  Marty F  Schoefs B 《FEBS letters》2007,581(18):3356-3362
Reticulons are proteins that have been found predominantly associated with the endoplasmic reticulum in yeast and mammalian cells. While their functions are still poorly understood, recent findings suggest that they participate in the shaping of the tubular endoplamic reticulum (ER). Although reticulon-like proteins have been identified in plants, very little is known about their cellular localization and functions. Here, we characterized the reticulon-like protein family of Arabidopsis thaliana. Three subfamilies can be distinguished on the basis of structural organization and sequence homology. We investigated the subcellular localization of two members of the largest subfamily, i.e. AtRTNLB2 and AtRTNLB4, using fluorescent protein tags. The results demonstrate for the first time that plant reticulon-like proteins are associated with the ER. Both AtRTNLB proteins are located in the tubular ER but AtRTNLB4 is also found in the lamellar ER cisternae, and in ER tubules in close association with the chloroplasts. Similarity in protein structure and subcellular localization between AtRTNLB2 and mammalian reticulons suggests that they could assume similar basic functions inside the cell.  相似文献   

16.
17.
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.  相似文献   

18.
19.
Veena Prabhakar 《FEBS letters》2009,583(6):983-991
The Arabidopsis thaliana gene At1g74030 codes for a putative plastid phosphoenolpyruvate (PEP) enolase (ENO1). The recombinant ENO1 protein exhibited enolase activity and its kinetic properties were determined. ENO1 is localized to plastids and expressed in most heterotrophic tissues including trichomes and non-root-hair cells, but not in the mesophyll of leaves. Two T-DNA insertion eno1 mutants exhibited distorted trichomes and reduced numbers of root hairs as the only visible phenotype. The essential role of ENO1 in PEP provision for anabolic processes within plastids, such as the shikimate pathway, is discussed with respect to plastid transporters, such as the PEP/phosphate translocator.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号