首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The AAA + (ATPases associated with a variety of cellular activities) superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility and conformational exchange on the microsecond-to-millisecond timescale. The electrostatic surface of N-ClpCR differs substantially from the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC.  相似文献   

2.
Lon ATP-dependent proteases are key components of the protein quality control systems of bacterial cells and eukaryotic organelles. Eubacterial Lon proteases contain an N-terminal domain, an ATPase domain, and a protease domain, all in one polypeptide chain. The N-terminal domain is thought to be involved in substrate recognition, the ATPase domain in substrate unfolding and translocation into the protease chamber, and the protease domain in the hydrolysis of polypeptides into small peptide fragments. Like other AAA+ ATPases and self-compartmentalising proteases, Lon functions as an oligomeric complex, although the subunit stoichiometry is currently unclear. Here, we present crystal structures of truncated versions of Lon protease from Bacillus subtilis (BsLon), which reveal previously unknown architectural features of Lon complexes. Our analytical ultracentrifugation and electron microscopy show different oligomerisation of Lon proteases from two different bacterial species, Aquifex aeolicus and B. subtilis. The structure of BsLon-AP shows a hexameric complex consisting of a small part of the N-terminal domain, the ATPase, and protease domains. The structure shows the approximate arrangement of the three functional domains of Lon. It also reveals a resemblance between the architecture of Lon proteases and the bacterial proteasome-like protease HslUV. Our second structure, BsLon-N, represents the first 209 amino acids of the N-terminal domain of BsLon and consists of a globular domain, similar in structure to the E. coli Lon N-terminal domain, and an additional four-helix bundle, which is part of a predicted coiled-coil region. An unexpected dimeric interaction between BsLon-N monomers reveals the possibility that Lon complexes may be stabilised by coiled-coil interactions between neighbouring N-terminal domains. Together, BsLon-N and BsLon-AP are 36 amino acids short of offering a complete picture of a full-length Lon protease.  相似文献   

3.
Sulfolobus solfataricus metabolizes the five-carbon sugar d-arabinose to 2-oxoglutarate by an inducible pathway consisting of dehydrogenases and dehydratases. Here we report the crystal structure and biochemical properties of the first enzyme of this pathway: the d-arabinose dehydrogenase. The AraDH structure was solved to a resolution of 1.80 A by single-wavelength anomalous diffraction and phased using the two endogenous zinc ions per subunit. The structure revealed a catalytic and cofactor binding domain, typically present in mesophilic and thermophilic alcohol dehydrogenases. Cofactor modeling showed the presence of a phosphate binding pocket sequence motif (SRS-X2-H), which is likely to be responsible for the enzyme's preference for NADP+. The homo-tetrameric enzyme is specific for d-arabinose, l-fucose, l-galactose and d-ribose, which could be explained by the hydrogen bonding patterns of the C3 and C4 hydroxyl groups observed in substrate docking simulations. The enzyme optimally converts sugars at pH 8.2 and 91 degrees C, and displays a half-life of 42 and 26 min at 85 and 90 degrees C, respectively, indicating that the enzyme is thermostable at physiological operating temperatures of 80 degrees C. The structure represents the first crystal structure of an NADP+-dependent member of the medium-chain dehydrogenase/reductase (MDR) superfamily from Archaea.  相似文献   

4.
5.
6.
The transformation efficiency of naturally competent Bacillus subtilis cells can be significantly increased using β recombinase binding sequences, as revealed by the results of this study. Plasmids containing different variations of these so called six-site-marker-cassettes were investigated. Furthermore, an optimized protocol for knock-out or knock-in mutations combining the Cre–lox-system and the six-sites is presented, which can be used for multiple genome modifications of B. subtilis.  相似文献   

7.
The small 3 kDa SpoVM protein is essential for development of the spore in Bacillus subtilis. Genetic and biochemical experiments have shown that the function of SpoVM is to inhibit the proteolytic activity of FtsH during sporulation. We have used a combination of genetic and biophysical techniques to characterise the role of this small polypeptide. SpoVM was found to be widespread in Bacillus as well as in two Clostridia species, suggesting that SpoVM provides a common mechanism for inactivating the FtsH protease during spore differentiation. Using site-specific mutagenesis, we have identified C-terminal residues of SpoVM essential for biological activity. Analysis of SpoVM’s structure showed that it is able to assume an α-helical conformation in the presence of a lipid interface which may be important in interacting with FtsH.  相似文献   

8.
In a chemically defined medium (F4/3) containing fructose, arginine, histidine and methionine, the addition of 0.1% l-phenylalanine to Bacillus brevis ATCC 9999 enhanced growth and gramicidin S (GS) production on both volumetric and specific bases; surprisingly, it decreased the specific activities of the two GS synthetases. Decreased specific activities were observed even when both soluble and particulate GS synthetases were assayed. The decreases were not caused by inhibition or repression by phenylalanine itself but, more probably, by a negative feedback effect of cellular GS on its own synthetases. High concentrations of GS were found to be associated with cells even before the presence of GS in the fermentation broth was detected. These cellular GS concentrations were much higher in fermentations conducted with phenylalanine.  相似文献   

9.
Regulating gene expression directly at the mRNA level represents a novel approach to control cellular processes in all organisms. In this respect, an RNA-binding protein plays a key role by targeting the mRNA to regulate the expression by attenuation or an anti-termination mechanism only in the presence of their cognate ligands. Although many proteins are known to use these mechanisms to regulate the gene expression, no structural insights have been revealed to date to explain how these proteins trigger the conformation for the recognition of RNA. This review describes the activated conformation of HutP, brought by the coordination of L-histidine and Mg2+ ions, based on our recently solved crystal structures [uncomplexed HutP, HutP–Mg2+, HutP–L-histidine, HutP–Mg2+–L-histidine, HutP–Mg2+–L-histidine-RNA]. Once the HutP is activated, the protein binds specifically to bases within the terminator region, without undergoing further structural rearrangement. Also, a high resolution (1.48 Å) crystal structure of the quaternary complex containing the three GAG motifs is presented. This analysis clearly demonstrates that the first base in the UAG motifs is not important for the function and is consistent with our previous observations.  相似文献   

10.
Many cytoplasmic proteins without a cleavable signal peptide, including enolase, are secreted during the stationary phase in Bacillus subtilis but the molecular mechanism is not yet clear. We previously identified a highly conserved embedded membrane domain in an internal hydrophobic α-helix of enolase that plays an important role in its secretion. In this study, we examined the role of the helix in more detail for the secretion of enolase. Altering this helix by mutations showed that many mutated forms in this domain were not secreted, some of which were not stable as a soluble form in the cytoplasm. On the other hand, mutations on the flanking regions of the helix or the conserved basic residues showed no deleterious effect. Bacillus enolase with the proper hydrophobic helical domain was also exported extracellularly in Escherichia coli, indicating that the requirement of the helix for the secretion of enolase is conserved in these species. GFP fusions with enolase regions showed that the hydrophobic helix domain itself was not sufficient to serve as a functional secretion signal; a minimal length of N-terminus 140 amino acids was required to mediate the secretion of the fused reporter GFP. We conclude that the internal hydrophobic helix of enolase is essential but is not sufficient as a signal for secretion; the intact long N-terminus including the hydrophobic helix domain is required to serve as a non-cleavable signal for the secretion of Bacillus enolase.  相似文献   

11.
A two-dimensional zymogram procedure for the analysis of nucleases is described. Isoelectric focusing (IEF) and nonequilibrium pH gradient electrophoresis (NEPHGE) were compared as first dimensions in combination with sodium dodecyl sulfate (SDS) electrophoresis as the second dimension in analyzing nucleases in lysates of Bacillus subtilis. All renaturable nucleases detected following SDS electrophoresis alone were resolved in NEPHGE-SDS electrophoresis gels whereas, in IEF gels, most either were at the basic end or were not present in the second-dimension gels. This method of analysis has revealed a complexity in nuclease species in B. subtilis not previously recognized. Eighty-three discreet nuclease activities have been detected in B. subtilis lysates. Using purified deoxyribonuclease I (bovine pancreas), as little as 10 pg of nuclease can be detected.  相似文献   

12.
1.
1. l-Threonine aldolase (l-threonine acetaldehyde-lyase, EC 4.1.2.5) has been identified in threonine-grown cell-free extracts of the aerobic microorganism Bacillus subtilis.  相似文献   

13.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 °C) and low (20 °C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition Tm (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 °C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The Tm was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 °C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of Tm by 10.5 °C. In mineral media at 20 °C the corresponding changes of Tm were almost negligible. After a temperature shift from 40 to 20 °C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

14.
The transmembrane topology of the Acr3 family arsenite transporter Acr3 from Bacillus subtilis was analysed experimentally using translational fusions with alkaline phosphatase and green fluorescent protein and in silico by topology modelling. Initial topology prediction resulted in two models with 9 and 10 TM helices respectively. 32 fusion constructs were made between truncated forms of acr3 and the reporter genes at 17 different sites throughout the acr3 sequence to discriminate between these models. Nine strong reporter protein signals provided information about the majority of the locations of the cytoplasmic and extracellular loops of Acr3 and showed that both the N- and the C-termini are located in the cytoplasm. Two ambiguous data points indicated the possibility of an alternative 8 helix topology. This possibility was investigated using another 10 fusion variants, but no experimental support for the 8 TM topology was obtained. We therefore conclude that Acr3 has 10 transmembrane helices. Overall, the loops which connect the membrane spanning segments are short, with cytoplasmic loops being somewhat longer than the extracellular loops. The study provides the first ever experimentally derived structural information on a protein of the Acr3 family which constitutes one of the largest classes of arsenite transporters.  相似文献   

15.
The nutrient germinant receptors (nGRs) of spores of Bacillus species are clusters of three proteins that play a critical role in triggering the germination of dormant spores in response to specific nutrient molecules. Here, we report the crystal structure of the C protein of the GerB germinant receptor, so-called GerBC, of Bacillus subtilis spores at 2.3 Å resolution. The GerBC protein adopts a previously uncharacterized type of protein fold consisting of three distinct domains, each of which is centered by a β sheet surrounded by multiple α helices. Secondary-structure prediction and structure-based sequence alignment suggest that the GerBC structure represents the prototype for C subunits of nGRs from spores of all Bacillales and Clostridiales species and defines two highly conserved structural regions in this family of proteins. GerBC forms an interlocked dimer in the crystalline state but is predominantly monomeric in solution, pointing to the possibility that GerBC oligomerizes as a result of either high local protein concentrations or interaction with other nGR proteins in spores. Our findings provide the first structural view of the nGR subunits and a molecular framework for understanding the architecture, conservation, and function of nGRs.  相似文献   

16.
17.
S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTases) methylate diverse biological molecules using a SAM cofactor. The ytqB gene of Bacillus subtilis encodes a putative MTase and its biological function has never been characterized. To reveal the structural features and the cofactor binding mode of YtqB, we have determined the crystal structures of YtqB alone and in complex with its cofactor, SAM, at 1.9 Å and 2.2 Å resolutions, respectively. YtqB folds into a β-sheet sandwiched by two α-helical layers, and assembles into a dimeric form. Each YtqB monomer contains one SAM binding site, which shapes SAM into a slightly curved conformation and exposes the reactive methyl group of SAM potentially to a substrate. Our comparative structural analysis of YtqB and its homologues indicates that YtqB is a SAM-dependent class I MTase, and provides insights into the substrate binding site of YtqB.  相似文献   

18.

Background

The recent morphological studies on chaperonins have revealed that nearly equivalent amount of symmetric GroEL–(GroES)2 (football-shaped) and asymmetric GroEL–GroES (bullet-shaped) complexes coexist during the chaperonin reaction cycle, which prompted us to reexamine the equatorial split observed for chaperonin from Thermus thermophilus by implementing semi-empirical molecular orbital (MO) calculations, since it is now believed that the symmetric formation is a precursor to the equatorial split.

Methods

Semi-empirical MO calculations were employed to investigate the intersubunit interactions within the bullet-shaped T. thermophilus chaperonin capturing the substrate of folding intermediates. Interaction energies between each cis-GroEL subunit and closely related remaining subunits in cis-GroEL ring, or in trans-GroEL ring across the equatorial plane, and further, interaction energies between each GroES subunit and adjacent subunits in the same GroES ring and in cis-GroEL ring were simulated.

Results

Anisotropic intensities and energy distribution of the subunits were revealed by the calculations, which are consistent with two conformations of the subunits forming cis-GroEL ring as revealed by X-ray crystal structure, and with an anisotropic critical binding site on cis-GroEL ring for chaperonin functioning.

Conclusions

This is the first application of semi-empirical MO calculations to the macromolecular complex of the native bullet-shaped chaperonin (GroEL–GroES–ADP homolog) from T. thermophilus.

General significance

The results also appear to support the occurrence of the equatorial split for T. thermophilus chaperonin observed via electron microscopy, but has not yet been fully observed for Escherichia coli GroEL–GroES system.  相似文献   

19.
Bacterial histidine kinases (HKs) play a critical role in signal transduction for cellular adaptation to environmental conditions and stresses. YbdK from Bacillus subtilis is a 320-residue intra-membrane sensing HK characterized by a short input domain consisting of two transmembrane helices without an extracytoplasmic domain. While the cytoplasmic domains of HKs have been studied in detail, the intra-membrane sensing domain systems are still uncharacterized due to difficulties in handling the transmembrane domain. Here, we successfully obtained pure recombinant transmembrane domain of YbdK (YbdK-TM) from E. coli and analyzed the characteristics of YbdK-TM using nuclear magnetic resonance (NMR) and other biophysical methods. YbdK-TM was found to form homo-dimers in DPC micelles based on cross-linking assays and analytical ultracentrifugation analyses. We estimated the size of the YbdK-TM DPC complex to be 46 kDa using solution state NMR T1/T2 relaxation analyses in DPC micelles. These results provide information that will allow functional and structural studies of intra-membrane sensing HKs to begin.  相似文献   

20.
NMR spectroscopy and computer simulations were used to examine changes in chemical shifts and in dynamics of the ribonuclease barnase that result upon binding to its natural inhibitor barstar. Although the spatial structures of free and bound barnase are very similar, binding results in changes of the dynamics of both fast side-chains, as revealed by (2)H relaxation measurements, and NMR chemical shifts in an extended beta-sheet that is located far from the binding interface. Both side-chain dynamics and chemical shifts are sensitive to variations in the ensemble populations of the inter-converting molecular states, which can escape direct structural observation. Molecular dynamics simulations of free barnase and barnase in complex with barstar, as well as a normal mode analysis of barnase using a Gaussian network model, reveal relatively rigid domains that are separated by the extended beta-sheet mentioned above. The observed changes in NMR parameters upon ligation can thus be rationalized in terms of changes in inter-domain dynamics and in populations of exchanging states, without measurable structural changes. This provides an alternative model for the propagation of a molecular response to ligand binding across a protein that is based exclusively on changes in dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号