首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The E2 ubiquitin-conjugating enzymes UbcH7 and UbcH5B both show specific binding to the RING (really interesting new gene) domain of the E3 ubiquitin-protein ligase c-Cbl, but UbcH7 hardly supports ubiquitination of c-Cbl and substrate in a reconstituted system. Here, we found that neither structural changes nor subtle differences in the E2-E3 interaction surface are possible explanations for the functional specificity of UbcH5B and UbcH7 in their interaction with c-Cbl. The quick transfer of ubiquitin from the UbcH5B∼Ub thioester to c-Cbl or other ubiquitin acceptors suggests that UbcH5B might functionally be a relatively pliable E2 enzyme. In contrast, the UbcH7∼Ub thioester is too stable to transfer ubiquitin under our assay conditions, indicating that UbcH7 might be a more specific E2 enzyme. Our results imply that the interaction specificity between c-Cbl and E2 is required but not sufficient for transfer of ubiquitin to potential targets.  相似文献   

2.
It has recently been shown that Interleukin-1 receptor, type 1, an essential regulator of inflammation and inate immunity, undergoes regulated intramembrane proteolysis (RIP). Although IL-1R1-mediated intracellular signalling has been well studied, very little is known about how RIP of IL-1R1 is modulated. In this study, by using wild-type TRAF6 and TRAF6 mutants that are defective in its ubiquitin ligase activity, we show for the first time that TRAF6 induces ubiquitination of IL-1R1. We further demonstrate that of all TRAF family members examined, TRAF6 preferentially ubiquitinates IL-1R1. Moreover, we show that TRAF6 ubiquitin ligase activity and ubiquitination of IL-1R1 are positively correlated with IL-1R1 ectodomain shedding and subsequent gamma-secretase cleavage. Our results indicate that TRAF6-mediated ubiquitination of IL-1R1 has a decisive role in IL-1R1 signalling and propose a molecular mechanism whereby TRAF6 promotes ubiquitination and RIP of IL-1R1 through its ubiquitin ligase activity.  相似文献   

3.
Deubiquitinases (DUBs) are proteases that regulate various cellular processes by controlling protein ubiquitination. Cell-based studies indicate that the regulation of the activity of DUBs is important for homeostasis and is achieved by multiple mechanisms, including through their own ubiquitination. However, the physiological significance of the ubiquitination of DUBs to their functions in vivo is unclear. Here, we report that ubiquitination of the DUB ataxin-3 at lysine residue 117, which markedly enhances its protease activity in vitro, is critical for its ability to suppress toxic protein-dependent degeneration in Drosophila melanogaster. Compared with ataxin-3 with only Lys-117 present, ataxin-3 that does not become ubiquitinated performs significantly less efficiently in suppressing or delaying the onset of toxic protein-dependent degeneration in flies. According to further studies, the C terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase that ubiquitinates ataxin-3 in vitro, is dispensable for its ubiquitination in vivo and is not required for the neuroprotective function of this DUB in Drosophila. Our work also suggests that ataxin-3 suppresses degeneration by regulating toxic protein aggregation rather than stability.  相似文献   

4.
Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27Kip1, a principal target of the SCFSkp2 complex. Genetic ablation of p27Kip1 in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27Kip1 by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2-/- MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ), largely restored lipid accumulation and PPARγ gene expression in Skp2−/− MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27Kip1 expression.  相似文献   

5.
6.
7.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   

8.
Recurrent infections with high-risk human papillomaviruses (HPVs) are associated with human cervical cancers. All HPV-associated cancer tissues express the viral oncoproteins E6 and E7, which stimulate cell growth. The expression of E7 is crucial for both the initiation and the maintenance of HPV-associated cancer. Recent studies showed that the level of E7 in cancer cells is regulated by ubiquitin-dependent proteolysis through the 26S proteasome. In this study, we characterized the enzymes involved in the ubiquitin-dependent proteolysis of E7. We show that UbcH7, an E2 ubiquitin-conjugating enzyme, is specifically involved in the ubiquitination of E7. Furthermore, we show that E7 interacts with the SCF (Skp-Cullin-F box) ubiquitin ligase complex containing Cullin 1 (Cul1) and Skp2 and can be ubiquitinated by the Cul1-containing ubiquitin ligase in vitro. Coimmunoprecipitation analyses revealed that E7 interacts with Skp2 and Cul1 in vivo. Finally, the half-life of E7 was found to be significantly longer in Skp2(-/-) mouse embryo fibroblasts (MEFs) than in wild-type MEFs. Taken together, these results suggest that the Cul1- and Skp2-containing ubiquitin ligase plays a role in the ubiquitination and proteolysis of E7. In HPV type 16-containing cervical carcinoma cell line Caski, E7 localizes to both the cytoplasm and the nucleus. Brief treatment of Caski cells with MG132 (a proteasome inhibitor) causes the accumulation of E7 in discrete nuclear bodies. These nuclear bodies are detergent insoluble and contain polyubiquitinated E7. We suggest that E7 relocates to specific nuclear bodies for proteolysis in HPV-containing epithelial cells.  相似文献   

9.
E3 ubiquitin (Ub) ligases play diverse roles in cellular regulation in eukaryotes. Three homologous AtRmas (AtRma1, AtRma2, and AtRma3) were recently identified as ER-localized Arabidopsis homologs of human RING membrane-anchor E3 Ub ligase. Here, auxin binding protein 1 (ABP1), one of the auxin receptors in Arabidopsis, was identified as a potential substrate of AtRma2 through a yeast two-hybrid assay. An in vitro pull-down assay confirmed the interaction of full-length AtRma2 with ABP1. AtRma2 was transiently expressed in tobacco (Nicotiana benthamiana) plants through an Agrobacterium-mediated infiltration method and bound ABP1 in vivo. In vitro ubiquitination assays revealed that bacterially-expressed AtRma2 ubiquitinated ABP1. ABP1 was poly-ubiquitinated in tobacco cells and its stability was significantly increased in the presence of MG132, a 26S proteasome inhibitor. This suggests that ABP1 is controlled by the Ub/26S proteasome system. Therefore, AtRma2 is likely involved in the cellular regulation of ABP1 expression levels.  相似文献   

10.
CTP synthase (CTPsyn) plays an essential role in DNA, RNA, and lipid synthesis. Recent studies in bacteria, yeast, and Drosophila all reveal a polymeric CTPsyn structure, which dynamically regulates its enzymatic activity. However, the molecular mechanism underlying the formation of CTPsyn polymers is not completely understood. In this study, we found that reversible ubiquitination regulates the dynamic assembly of the filamentous structures of Drosophila CTPsyn. We further determined that the proto-oncogene Cbl, an E3 ubiquitin ligase, controls CTPsyn filament formation in endocycles. While the E3 ligase activity of Cbl is required for CTPsyn filament formation, Cbl does not affect the protein levels of CTPsyn. It remains unclear whether the regulation of CTPsyn filaments by Cbl is through direct ubiquitination of CTPsyn. In the absence of Cbl or with knockdown of CTPsyn, the progression of the endocycle-associated S phase was impaired. Furthermore, overexpression of wild-type, but not enzymatically inactive CTPsyn, rescued the endocycle defect in Cbl mutant cells. Together, these results suggest that Cbl influences the nucleotide pool balance and controls CTPsyn filament formation in endocycles. This study links Cbl-mediated ubiquitination to the polymerization of a metabolic enzyme and reveals a role for Cbl in endocycles during Drosophila development.  相似文献   

11.
Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic‐type serine‐threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG–host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin‐activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor‐associated factor 2 (TRAF2) and TGF‐β‐activated kinase 1 (TAK1), thereby inhibiting the activation of NF‐κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin‐conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82‐Ub), rather than the usual C86‐Ub thiol‐ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.  相似文献   

12.
13.
In vitro, the anaphase-promoting complex (APC) E3 ligase functions with E2 ubiquitin-conjugating enzymes of the E2-C and Ubc4/5 families to ubiquitinate substrates. However, only the use of the E2-C family, notably UbcH10, is genetically well validated. Here, we biochemically demonstrate preferential use of UbcH10 by the APC, specified by the E2 core domain. Importantly, an additional E2-E3 interaction mediated by the N-terminal extension of UbcH10 regulates APC activity. Mutating the highly conserved N terminus increases substrate ubiquitination and the number of substrate lysines targeted, allows ubiquitination of APC substrates lacking their destruction boxes, increases resistance to the APC inhibitors Emi1 and BubR1 in vitro, and bypasses the spindle checkpoint in vivo. Fusion of the UbcH10 N terminus to UbcH5 restricts ubiquitination activity but does not direct specific interactions with the APC. Thus, UbcH10 combines a specific E2-E3 interface and regulation via its N-terminal extension to limit APC activity for substrate selection and checkpoint control.  相似文献   

14.
FBXO25 is one of the 69 known human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of SKP1, Rbx1, Cullin1, and F-box protein (SCF1) that are involved in targeting proteins for degradation across the ubiquitin proteasome system. However, the substrates of most SCF E3 ligases remain unknown. Here, we applied an in chip ubiquitination screen using a human protein microarray to uncover putative substrates for the FBXO25 protein. Among several novel putative targets identified, the c-fos protooncogene regulator ELK-1 was characterized as the first endogenous substrate for SCF1(FBXO25) E3 ligase. FBXO25 interacted with and mediated the ubiquitination and proteasomal degradation of ELK-1 in HEK293T cells. In addition, FBXO25 overexpression suppressed induction of two ELK-1 target genes, c-fos and egr-1, in response to phorbol 12-myristate 13-acetate. Together, our findings show that FBXO25 mediates ELK-1 degradation through the ubiquitin proteasome system and thereby plays a role in regulating the activation of ELK-1 pathway in response to mitogens.  相似文献   

15.
The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys63-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.  相似文献   

16.
17.
18.
Ubiquitin is a small polypeptide and ubiquitination is the post-translational modification by ubiquitin protein, resulting in degradation of target proteins by the 26S proteasome complex. Here, we found that E3 ubiquitin ligase SINAT5, an Arabidopsis homologue of the Drosophila SINA RING-finger protein, interacts directly with LHY, a component of the circadian oscillator, and DET1, a negative regulator of light-regulated gene expression. We also found that SINAT5 has E3 ubiquitination activity for LHY but not for DET1. Interestingly, LHY ubiquitination by SINAT5 was inhibited by DET1. Late flowering of sinat5 mutants indicates that flowering time can be controlled by DET1 through regulation of LHY stability by SINAT5.  相似文献   

19.
20.
The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, interacts with several host cellular proteins including uracil DNA glycosylase-2 (UNG2) and a cullin-RING E3 ubiquitin ligase assembly (CRL4DCAF1). The ligase is composed of cullin 4A (CUL4A), RING H2 finger protein (RBX1), DNA damage-binding protein 1 (DDB1), and a substrate recognition subunit, DDB1- and CUL4-associated factor 1 (DCAF1). Here we show that recombinant UNG2 specifically interacts with Vpr, but not with Vpx of simian immunodeficiency virus, forming a heterotrimeric complex with DCAF1 and Vpr in vitro as well as in vivo. Using reconstituted CRL4DCAF1 and CRL4DCAF1-Vpr E3 ubiquitin ligases in vitro reveals that UNG2 ubiquitination (ubiquitylation) is facilitated by Vpr. Co-expression of DCAF1 and Vpr causes down-regulation of UNG2 in a proteasome-dependent manner, with Vpr mutants that are defective in UNG2 or DCAF1 binding abrogating this effect. Taken together, our results show that the CRL4DCAF1 E3 ubiquitin ligase can be subverted by Vpr to target UNG2 for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号