首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug‐loaded PLGA‐lecithin‐PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti‐nucleolin aptamers for site‐specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X‐ray photoelectron spectroscopy (XPS). The drug‐loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF‐7 and GI‐1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug‐loading studies indicated that under the same drug loading, the aptamer‐targeted NPs show enhanced cancer killing effect compared to the corresponding non‐targeted NPs. In addition, the PLGA‐lecithin‐PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer‐PLGA‐lecithin‐PEG NPs are potential carrier candidates for differential targeted drug delivery. Biotechnol. Bioeng. 2012; 109: 2920–2931. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
A new kind of aggregation-induced emission compound was synthesized and used as the probe of nucleic acid. The characterization of this compound was studied. Both the RNA and DNA were detected by using this probe. And the detection scope of DNA and RNA was different. We researched the selectivity of our probe in double and single strand DNA sequences. The visualization of gel electrophoresis and the cell nucleus imaging were researched as well. Compared with the traditional nucleus dye Hoechst 33258, our probe also has the potential to be nucleus dye. And the cell toxicity was well performed by MTT assays.  相似文献   

4.
A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5–4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no ‘alkalizing effect’ on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells.  相似文献   

5.
We describe a modification and post‐functionalization technique for a donor–acceptor–donor type monomer; 6‐(4,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)‐2H‐benzo[d][1,2, 3]triazol‐2‐yl)hexan‐1‐amine. Folic acid was attached to the fluorescent structure. The conjugation was confirmed via NMR and Fourier transform infrared analyses. Cytotoxicity was investigated and the comparison of association of targeted monomeric structures in tumor cells was monitored via fluorescence microscopy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:952–959, 2014  相似文献   

6.
As an important reactive oxygen species (ROS), hydrogen peroxide plays a significant role in the life activity system, and its abnormal levels are closely related to many diseases. Developing effective fluorescent probes for detecting hydrogen peroxide is very urgent. Therefore, we constructed a probe Z that can detect hydrogen peroxide in ratio. It has naphthimide as the fluorophore and phenylboronic acid pinacol esters as the recognition group. It shows higher sensitivity, lower detection limit, higher selectivity, and broad pH applicability. Moreover, probe Z has low cytotoxicity that can be used to detect exogenous hydrogen peroxide in HeLa cells and might be a potential tool for studying hydrogen peroxide in physiological activities.  相似文献   

7.
Polypyrrole-based polyamides are used as sequence-specific DNA probes. However, their cellular uptake and distribution are affected by several factors and have not been extensively studied in vivo. Here, we generated a series of fluorescence-conjugated polypyrrole compounds and examined their cellular distribution using live zebrafish and cultured human cells. Among the evaluated compounds, Py3-FITC was able to visualize collagen-rich tissues, such as the jaw cartilage, opercle and bulbus arteriosus, in early-stage living zebrafish embryos. Then, we stained cultured human cells with Py3-FITC and found that the staining became more intense as the amount of collagen was increased. In addition, Py3-FITC-stained HR cells, which represent a type of ionocyte on the body surface of living zebrafish embryos. Py3-FITC has low toxicity, and collagen-rich tissues and ionocytes can be visualized when soaked in Py3-FITC solution. Therefore, Py3-FITC may be a useful live imaging tool for detecting changes in collagen-rich tissue and ionocytes, including their mammalian analogues, during both normal development and disease progression.  相似文献   

8.
To date, several fluorescent probes modified by a single targeting agent have been explored. However, studies on the preparation of dual‐function quantum dot (QD) fluorescent probes with dual‐targeting action and a therapeutic effect are rare. Here, a dual‐targeting CdTe/CdS QD fluorescent probe with a bovine serum albumin–glycyrrhetinic acid conjugate and arginine‐glycine‐aspartic acid was successfully prepared that could induce the apoptosis of liver cancer cells and showed enhanced targeting in in vitro cell imaging. Therefore, the as‐prepared fluorescent probe in this work is an efficient diagnostic tool for the simultaneous detection of liver cancer and breast cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In recent years, microRNAs (miRNAs) have been proved to be closely related to the tumorigenesis and progression. An increasing number of researches have shown that microRNAs function as oncogenes or tumor suppressor genes in human malignant tumors. This study aims to explore the effects of microRNA-383 (miR-383) on malignant biological function of human gliomas. We detected the expression of miR-383 in glioma tissues and normal brain tissues by quantitative real-time PCR. Anchorage-independent growth assays, and flow cytometry were used to evaluate the functions of miR-383 that involves in cell growth and cell cycle. Western blotting assay was used to examine protein expression levels of Cyclin D1 (CCND1), a cell cycle-associated oncogene which has a predicted binding site of miR-383 within its 3′-untranslated region (3′-UTR), and luciferase activity assay was used to evaluate the 3′-UTR activity of CCND1. In this study, we found that miR-383 expression level was lower in gliomas than normal brain tissues. Overexpression of miR-383 in U251 and U87 cells showed a significant inhibitory effect on cell growth, which accompanied with cell cycle G0/G1 arrest as well as downregulation of CCND1 expression. Moreover, CCND1 was verified to be one of the direct targets of miR-383. In summary, this study suggested that miR-383 plays the role of tumor suppressor by targeting CCND1 in glioma cells, and may be useful for developing a new therapeutic strategy for gliomas.  相似文献   

10.
Hypochlorite (ClO), as a kind of essential reactive oxygen species, plays a crucial role in vitro and in vivo. Here, a ratiometric fluorescent probe ( TPAM ) was designed and constructed for sensing ClO based on substituted triphenylamine and malononitrile, which exhibited obvious colour transfer from orange to colourless under daylight accompanied by noticeable fluorescence change from red to green in response to ClO. TPAM could effectively monitor ClO with the merits of fast response, excellent selectivity, high sensitivity and a low detection limit of 0.1014 μM. 1H NMR, mass spectra and theoretical calculations proved that ClO caused the oxidation of the carbon–carbon double bond in TPAM , resulting in compound 1 and marked changes in colour and fluorescence. In addition, TPAM was utilized for imaging ClO in living cells successfully with good photostability and biocompatibility.  相似文献   

11.
Mitochondria contribute to redox and calcium balance, and apoptosis thus regulating cellular fate. In the present study, mitochondrial staining applying a novel dye, V07‐07059, was performed in human embryonic kidney cells, a human vascular endothelial cell line and primary human mononuclear cells. The new fluorescent mega Stokes dye (peak excitation: 488 nm, peak emission: 554 nm) showed superior fluorescent properties and stability. V07‐07059 stains mitochondria dependent on their membrane potential and is safe to use in vitro and in vivo. Unlike other dyes applied in this context (e.g. Tetramethylrhodamine methyl ester), V07‐07059 only marginally inhibits mitochondrial respiration and function. V07‐07059 enables real time imaging of mitochondrial trafficking and remodeling. Prolonged staining with V07‐07059 demonstrated the dyes suitability as a novel probe to track cells. In comparison to the widely used standard for cell proliferation and tracking studies 5(6)‐diacetate N‐succinimidyl ester, V07‐07059 proved superior regarding toxicity and photostability.

  相似文献   


12.
Legumain or asparaginyl endopeptidase is an enzyme overexpressed in some cancers and involved in cancer migration, invasion, and metastasis. We have developed radioiodine- ([125I]I-LCP) or fluorescein-labeled peptides (FL-LCP) with a cell-permeable d-Arg nonamer fused to an anionic d-Glu nonamer via a legumain-cleavable linker, to function as peptide probes that measure and monitor legumain activity. Non-cleavable probes of FL-NCP and [125I]I-NCP were similarly prepared and evaluated as negative control probes by altering their non-cleavable sequence. Model peptides with the legumain-cleavable or non-cleavable sequence (LCP and NCP, respectively) reacted with recombinant human legumain, and only LCP was digested by this enzyme. [125I]I-LCP uptake in legumain-positive HCT116 cells was significantly higher than that of [125I]I-NCP (11.2 ± 0.44% vs 1.75 ± 0.06% dose/mg). The accumulation of FL-LCP in the HCT116 cells was rather low (4.75 ± 0.29% dose/mg protein), but not significantly different from the levels of FL-NCP. It is possible that low concentrations of [125I]I-LCP (40 pM) can be effectively internalized after legumain cleavage. On the other hand, the cellular uptake of much higher concentrations of the FL-LCP derivative (1 mM) may be restricted by high concentrations of polyanions. The in vivo biodistribution studies in tumor-bearing mice demonstrated that the tumor uptake of [125I]I-LCP was 1.34% injected dose per gram (% ID/g) at 30 min. The tumor/blood and tumor/muscle ratios at 30 min were 0.63 and 1.77, respectively, indicating that the [125I]I-LCP accumulation in tumors was inadequate for in vivo imaging. Although further structural modifications are necessary to improve pharmacokinetic properties, [125I]I-LCP has been demonstrated to be an effective scaffold for the development of nuclear medicine imaging probes to monitor legumain activity in living subjects.  相似文献   

13.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

14.
A turn‐on fluorescent probe Coumarin‐SO2 based on a nucleophilic addition reaction was developed for the rapid detection of SO32– in aqueous media. The probe Coumarin‐SO2 displays excellent water solubility, fast response, highly sensitivity and highly selectivity over other biological related species. More importantly, living cell imaging experiments indicate the feasibility of using the probe for the detection of SO32– in biological systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Green fluorescent carbon dots (G-CDs) were fabricated from Coptis chinensis directly via one-step hydrothermal treatment for the determination of quercetin (QCT) and pH sensing. The obtained G-CDs have low cytotoxicity, good photostability and excellent water solubility. The optimal excitation wavelength and emission wavelength were 480 and 530 nm. A remarkable emission reduction displayed when QCT was added to the G-CDs and the linear detection range is 0–200 μM, the limit of detection is 4.41 nM. The proposed method was applied to the determination of QCT in Haerbin beer products with satisfactory successful recovery. Furthermore, the G-CDs exhibited sensitive changes to pH and two fluorescent pH sensors in the linear ranges of 2.0–6.0 and 6.0–11.0 were constructed based on this. They also provide a feasible method to measure the pH value of real water samples. Importantly, the fluorescent sensor has been extended to detect QCT in yeast cell, demonstrating the G-CDs present potential biosensing application prospect.  相似文献   

16.
Targeted molecular imaging to detect changes in the structural and functional organization of tissues, at the molecular level, is a promising approach for effective and early diagnosis of diseases. Quantitative and qualitative changes in type I collagen, which is a major component in the extra cellular matrix (ECM) of skin and other vital organs like lung, liver, heart and kidneys, are often associated with the pathophysiology of these organs. We have synthesized a fluorescent probe that comprises collagelin, a specific collagen binding peptide, coupled to fluorescent porphyrin that can effectively detect abnormal deposition of collagen in live tissues by emitting fluorescence in the near infra red (NIR) region. In this report we have presented the methodology for coupling of 5-(4-carboxy phenyl)-10, 15, 20-triphenyl porphyrin (C-TPP) to the N-terminal of collagelin or to another mutant peptide (used as a control). We have evaluated the efficacy of these fluorescent peptides to detect collagen deposition in live normal and abnormal tissues. Our results strongly suggest that porphyrin-tagged collagelin can be used as an effective probe for the non invasive in vivo detection of tissue fibrosis, especially in the liver.  相似文献   

17.
18.
Nitrogen-doped carbon dots (NCDs) with bright blue fluorescence were constructed by a hydrothermal method using sucrose and l- proline as raw materials. The NCDs were characterized by transmitted electron microscopy, X-ray diffraction, Fourier-transform infrared spectrometry, X-ray photoelectron spectroscopy, and ultraviolet-visible absorption and fluorescence spectroscopy to investigate the morphology, elemental composition, and optical properties. The NCDs had good water solubility, high dispersibility with an average diameter of only 1.7 nm, and satisfactory optical properties with a fluorescence quantum yield of 23.4%. The NCDs were employed for the detection of bilirubin. A good linear response of the NCDs in the range 0.35–9.78 μM was obtained for bilirubin with a detection limit of 33 nM. The NCDs were also applied to the analysis of real samples, serum and urine, with a recovery of 95.34% to 104.66%. The low cytotoxicity and good biocompatibility of the NCDs were indicated by an MTT assay and cell imaging of HeLa cells. Compared with other detection systems, using NCDs for bilirubin detection was a facile and efficient method with good selectivity and sensitivity.  相似文献   

19.
A fluorescent pH probe, N,N′‐bi( l ‐phenylalanine amine)‐perylene‐3,4;9,10‐dicarboxylic diimide (PDCDA) was synthesized and used for pH sensing in living cells. A significant fluorescence intensity change was observed over a pH range from 7.0 to 4.0. Electrostatic potential maps (MEP) suggested that the electronic repulsion between PDCDAs was increased by the high negative electrostatic potential which resulted in a high water solubility of PDCDA. PDCDA was successfully applied as a high‐performance fluorochrome for living HeLa cell imaging. The results demonstrate that the probe PDCDA is a good candidate for monitoring pH fluctuations in living cells with good water solubility, low cytotoxicity, high fluorescence quantum yield and photostability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A water-soluble fluorescent probe BPN, by introducing a piperazine as the pH-sensitive fluorescence signaling motif to the hydrophilic propionic acid-substituted 1,8-naphthalimide fluorophore, is highly sensitive to pH changes within cytoplasm matrix in living cells, as well as pH-related diseases models. Owing to the protonation-induced inhibition of the photoinduced electron transfer (PET) from piperazine to naphthalimide fluorophore, BPN displayed a significant fluorescence enhancement (more than 131-fold) upon the pH decreasing from 11.0 to 3.0. The linear range was between pH 6.4 to 8.0 with a pKa value of 6.69 near the physiological pH, which was suitable for cytosolic pH research. Furthermore, BPN exhibited a large Stokes shift (142 nm), good water solubility, excellent photostability, high selectivity and low cytotoxicity. All these advantages were particularly beneficial for intracellular pH imaging. Using BPN, we demonstrated the real-time monitoring of cytosolic pH changes in living cells. Most importantly, BPN has not only been successfully applied for distinguishing inflammation in mice, but also the surgical specimens of cancer tissue, making it of great potential application in cancer diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号