首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Low molecular weight protein tyrosine phosphatases (LMWPTPs) are ubiquitously found as small cytoplasmic enzymes which act on phospho-tyrosine containing proteins that are engaged in various cellular functions. Vibrio cholerae O395 contains two LMWPTPs having widely different sequence. Phylogenetic analysis based on a non redundant set of 124 LMWPTP sequences, designate that LMWPTP-2 from Vibrio choleraeO395 (VcLMWPTP-2) is a single taxon. We have determined the crystal structure of VcLMWPTP-2 at 2.6 Å with MOPS bound in the active site. Tertiary structure analysis indicates that VcLMWPTP-2 forms dimer. Studies in solution state also confirm exclusive presence of a dimeric form. Kinetic studies demonstrate that VcLMWPTP-2 dimer is catalytically active while inactivation through oligomerisation was reported as one of the regulatory mechanism in case of mammalian LMWPTP viz., Bos taurus LMWPTP, BPTP. Kinetic studies using p-nitrophenyl phosphate (p-NPP) as a substrate demonstrate active participation of both the P-loop cysteine in catalysis. Vicinal Cys17, in addition plays a role of protecting the catalytic Cys12 under oxidative stress. Structural analysis and MD simulations allowed us to propose the role of several conserved residues around the active site. Distribution of surface charges and grooves around the active site delineates unique features of VcLMWPTP-2 which could be utilized to design specific inhibitor.  相似文献   

2.
Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12-20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function.  相似文献   

3.
Allantoinase acts as a key enzyme for the biogenesis and degradation of ureides by catalyzing the conversion of (S)-allantoin into allantoate, the final step in the ureide pathway. Despite limited sequence similarity, biochemical studies of the enzyme suggested that allantoinase belongs to the amidohydrolase family. In this study, the crystal structure of allantoinase from Escherichia coli was determined at 2.1 Å resolution. The enzyme consists of a homotetramer in which each monomer contains two domains: a pseudo-triosephosphate-isomerase barrel and a β-sheet. Analogous to other enzymes in the amidohydrolase family, allantoinase retains a binuclear metal center in the active site, embedded within the barrel fold. Structural analyses demonstrated that the metal ions in the active site ligate one hydroxide and six residues that are conserved among allantoinases from other organisms. Functional analyses showed that the presence of zinc in the metal center is essential for catalysis and enantioselectivity of substrate. Both the metal center and active site residues Asn94 and Ser317 play crucial roles in dictating enzyme activity. These structural and functional features are distinctively different from those of the metal-independent allantoinase, which was very recently identified.  相似文献   

4.
A phosphate group at the C1-atom of inositol-monophosphate (IMP) and fructose-1,6-bisphosphate (FBP) is hydrolyzed by a phosphatase IMPase and FBPase in a metal-dependent way, respectively. The two enzymes are almost indiscernible from each other because of their highly similar sequences and structures. Metal ions are bound to residues on the β1- and β2-strands and one mobile loop. However, FBP has another phosphate and FBPases exist as a higher oligomeric state, which may discriminate FBPases from IMPases. There are three genes annotated as FBPases in Zymomonas mobilis, termed also cbbF (ZmcbbF). The revealed crystal structure of one ZmcbbF shows a globular structure formed by five stacked layers. Twenty-five residues in the middle of the sequence form an α-helix and a β-strand, which occupy one side of the catalytic site. A non-polar Leu residue among them is protruded to the active site, pointing out unfavorable access of a bulky charged group to this side. In vitro assays have shown its dimeric form in solution. Interestingly, two β-strands of β1 and β2 are disordered in the ZmcbbF structure. These data indicate that ZmcbbF might structurally belong to IMPase, and imply that its active site would be reorganized in a yet unreported way.  相似文献   

5.
The 2-oxoglutarate (2OG)/Fe2 +-dependent oxygenases (2OG oxygenases) are a large family of proteins that share a similar overall three-dimensional structure and catalyze a diverse array of oxidation reactions. The Jumonji C (JmjC)-domain-containing proteins represent an important subclass of the 2OG oxygenase family that typically catalyze protein hydroxylation; however, recently, other reactions have been identified, such as tRNA modification. The Escherichia coli gene, ycfD, was predicted to be a JmjC-domain-containing protein of unknown function based on primary sequence. Recently, YcfD was determined to act as a ribosomal oxygenase, hydroxylating an arginine residue on the 50S ribosomal protein L-16 (RL-16). We have determined the crystal structure of YcfD at 2.7 Å resolution, revealing that YcfD is structurally similar to known JmjC proteins and possesses the characteristic double-stranded β-helix fold or cupin domain. Separate from the cupin domain, an additional globular module termed α-helical arm mediates dimerization of YcfD. We further have shown that 2OG binds to YcfD using isothermal titration calorimetry and identified key binding residues using mutagenesis that, together with the iron location and structural similarity with other cupin family members, allowed identification of the active site. Structural homology to ribosomal assembly proteins combined with GST (glutathione S-transferase)-YcfD pull-down of a ribosomal protein and docking of RL-16 to the YcfD active site support the role of YcfD in regulation of bacterial ribosome assembly. Furthermore, overexpression of YcfD is shown to inhibit cell growth signifying a toxic effect on ribosome assembly.  相似文献   

6.
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. For V. cholerae to colonize the intestinal epithelium, accessory toxins such as the multifunctional autoprocessing repeats-in-toxin (MARTXVc) toxin are required. MARTX toxins are composite toxins comprised of arrayed effector domains that carry out distinct functions inside the host cell. Among the three effector domains of MARTXVc is the Rho inactivation domain (RIDVc) known to cause cell rounding through inactivation of small RhoGTPases. Using alanine scanning mutagenesis in the activity subdomain of RIDVc, four residues, His-2782, Leu-2851, Asp-2854, and Cys-3022, were identified as impacting RIDVc function in depolymerization of the actin cytoskeleton and inactivation of RhoA. Tyr-2807 and Tyr-3015 were identified as important potentially for forming the active structure for substrate contact but are not involved in catalysis or post translational modifications. Finally, V. cholerae strains modified to carry a catalytically inactive RIDVc show that the rate and efficiency of MARTXVc actin cross-linking activity does not depend on a functional RIDVc, demonstrating that these domains function independently in actin depolymerization. Overall, our results indicate a His-Asp-Cys catalytic triad is essential for function of the RID effector domain family shared by MARTX toxins produced by many Gram-negative bacteria.  相似文献   

7.
Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 Å, disclosing a homodimer. A serine from one subunit inserts into the active site of the other to donate to the oxyanion hole and coordinates the ligand proximal to the active-site cysteine. Dimerization is unique to the mature form and is clearly a prerequisite for catalysis. The present structure supports a tripartite switch system that is triggered upon dimerization and substrate binding: (1) liberation of the active-site histidine from an inactive configuration, (2) relocation of residues blocking the substrate binding pockets and (3) repositioning of two active-site tryptophans to settle in the active configuration. Based on the present structure, the active site of clan CA cysteine proteases is expanded and a detailed mechanism of the deacylation mechanism is proposed. The results may have applications for the development of protease inhibitors specific to bacterial cysteine proteases.  相似文献   

8.
Phosphoenolpyruvate carboxylase is an ubiquitous cytosolic enzyme that catalyzes the ß-carboxylation of phosphoenolpyruvate (PEP) and is encoded by multigene family in plants. It plays an important role in carbon economy of plants by assimilating CO2 into organic acids for subsequent C4 or CAM photosynthesis or to perform several anaplerotic roles in non-photosynthetic tissues. In this study, a cDNA clone encoding for PEPC polypeptide possessing signature motifs characteristic to ZmC4PEPC was isolated from Pennisetum glaucum (PgPEPC). Deduced amino acid sequence revealed its predicted secondary structure consisting of forty alpha helices and eight beta strands is well conserved among other PEPC homologs irrespective of variation in their primary amino acid sequences. Predicted PgPEPC quartenary structure is a tetramer consisting of a dimer of dimers, which is globally akin to maize PEPC crystal structure with respect to major chain folding wherein catalytically important amino acid residues of active site geometry are conserved. Recombinant PgPEPC protein expressed in E. coli and purified to homogeneity, possessed in vitro ß-carboxylation activity that is determined using a coupled reaction converting PEP into malate. Tetramer is the most active form, however, it exists in various oligomeric forms depending upon the protein concentration, pH, ionic strength of the media and presence of its substrate or effecters. Recombinant PgPEPC protein confers enhanced growth advantage to E. coli under harsh growth conditions in comparison to their respective controls; suggesting that PgPEPC plays a significant role in stress adaptation.  相似文献   

9.
The mammalian peptidoglycan recognition protein-S (PGRP-S) binds to peptidoglycans (PGNs), which are essential components of the cell wall of bacteria. The protein was isolated from the samples of milk obtained from camels with mastitis and purified to homogeneity and crystallized. The crystals belong to orthorhombic space group I222 with a = 87.0 Å, b = 101.7 Å and c = 162.3 Å having four crystallographically independent molecules in the asymmetric unit. The structure has been determined using X-ray crystallographic data and refined to 1.8 Å resolution. Overall, the structures of all the four crystallographically independent molecules are identical. The folding of PGRP-S consists of a central β-sheet with five β-strands, four parallel and one antiparallel, and three α-helices. This protein fold provides two functional sites. The first of these is the PGN-binding site, located on the groove that opens on the surface in the direction opposite to the location of the N terminus. The second site is implicated to be involved in the binding of non-PGN molecules, it also includes putative N-terminal segment residues (1-31) and helix α2 in the extended binding. The structure reveals a novel arrangement of PGRP-S molecules in which two pairs of molecules associate to form two independent dimers. The first dimer is formed by two molecules with N-terminal segments at the interface in which non-PGN binding sites are buried completely, whereas the PGN-binding sites of two participating molecules are fully exposed at the opposite ends of the dimer. In the second dimer, PGN-binding sites are buried at the interface while non-PGN binding sites are fully exposed at the opposite ends of the dimer. This form of dimeric arrangement is unique and seems to be aimed at enhancing the capability of the protein against specific invading bacteria. This mode of functional dimerization enhances efficiency and specificity, and is observed for the first time in the family of PGRP molecules.  相似文献   

10.
11.
Halorhodopsin from Natronomonas pharaonis (pHR) was previously crystallized into a monoclinic space group C2, and the structure of the chloride-bound purple form was determined. Here, we report the crystal structures of two chloride-free forms of pHR, that is, an O-like blue form and an M-like yellow form. When the C2 crystal was soaked in a chloride-free alkaline solution, the protein packing was largely altered and the yellow form containing all-trans retinal was generated. Upon neutralization, this yellow form was converted into the blue form. From structural comparison of the different forms of pHR, it was shown that the removal of a chloride ion from the primary binding site (site I), which is located between the retinal Schiff base and Thr126, is accompanied by such a deformation of helix C that the side chain of Thr126 moves toward helix G, leading to a significant shrinkage of site I. A large structural change is also induced in the chloride uptake pathway, where a flip motion of the side chain of Glu234 is accompanied by large movements of the surrounding aromatic residues. Irrespective of different charge distributions at the active site, there was no large difference in the structures of the yellow form and the blue form. It is shown that the yellow-to-purple transition is initiated by the entrance of one water and one HCl to the active site, where the proton and the chloride ion in HCl are transferred to the Schiff base and site I, respectively.  相似文献   

12.
The crystal structure of the ATP-bound form of the tetrameric phosphofructokinase (PFK) from Trypanosoma brucei enables detailed comparisons to be made with the structures of the apoenzyme form of the same enzyme, as well as with those of bacterial ATP-dependent and PPi-dependent PFKs. The active site of T. brucei PFK (which is strictly ATP-dependent but belongs to the PPi-dependent family by sequence similarities) is a chimera of the two types of PFK. In particular, the active site of T. brucei PFK possesses amino acid residues and structural features characteristic of both types of PFK. Conformational changes upon ATP binding are observed that include the opening of the active site to accommodate the two substrates, MgATP and fructose 6-phosphate, and a dramatic ordering of the C-terminal helices, which act like reaching arms to hold the tetramer together. These conformational transitions are fundamentally different from those of other ATP-dependent PFKs. The substantial differences in structure and mechanism of T. brucei PFK compared with bacterial and mammalian PFKs give optimism for the discovery of species-specific drugs for the treatment of diseases caused by protist parasites of the trypanosomatid family.  相似文献   

13.
The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan.  相似文献   

14.
First structures of an active bacterial tyrosinase reveal copper plasticity   总被引:2,自引:0,他引:2  
Tyrosinase is a member of the type 3 copper enzyme family that is involved in the production of melanin in a wide range of organisms. The crystal structures of a tyrosinase from Bacillus megaterium were determined at a resolution of 2.0-2.3 Å. The enzyme crystallized as a dimer in the asymmetric unit and was shown to be active in crystal. The overall monomeric structure is similar to that of the monomer of the previously determined tyrosinase from Streptomyces castaneoglobisporus, but it does not contain an accessory Cu-binding “caddie” protein. Two Cu(II) ions, serving as the major cofactors within the active site, are coordinated by six conserved histidine residues. However, determination of structures under different conditions shows varying occupancies and positions of the copper ions. This apparent mobility in copper binding modes indicates that there is a pathway by which copper is accumulated or lost by the enzyme. Additionally, we suggest that residues R209 and V218, situated in a second shell of residues surrounding the active site, play a role in substrate binding orientation based on their flexibility and position. The determination of a structure with the inhibitor kojic acid, the first tyrosinase structure with a bound ligand, revealed additional residues involved in the positioning of substrates in the active site. Comparison of wild-type structures with the structure of the site-specific variant R209H, which possesses a higher monophenolase/diphenolase activity ratio, lends further support to a previously suggested mechanism by which monophenolic substrates dock mainly to CuA.  相似文献   

15.
We have analyzed the crystal structure of the dimeric form of d-glycero-d-manno-heptose-1,7-bisphosphate phosphatase from Burkholderia thailandensis (BtGmhB), catalyzing the removal of the phosphate at the 7 position of d-glycero-d-manno-heptose-1,7-bisphosphate. The crystal structure of BtGmhB revealed a dimeric form caused by a disruption of a short zinc-binding loop. The dimeric BtGmhB structure was induced by triggering the loss of Zn2 + via the protonation of cysteine residues at pH 4.8 of the crystallization condition. Similarly, the addition of EDTA also causes the dimerization of BtGmhB. It appears there are two dimeric forms in solution with and without the disulfide bridge mediated by Cys95. The disulfide-free dimer produced by the loss of Zn2 + in the short zinc-binding loop is further converted to a stable disulfide-bonded dimer in vitro. Though the two dimeric forms are reversible, both of them are inactive due to a deformation of the active site. Single and triple mutant experiments confirmed the presence of two dimeric forms in vitro. Phosphatase assay results showed that only a zinc-bound monomeric form contains catalytic activity in contrast to the inactive zinc-free dimeric forms. The monomer-to-dimer transition caused by the loss of Zn2 + observed in this study is an example of reversal phenomenon caused by artificial proteins containing protein engineered zinc-finger motifs where the monomer-to-dimer transitions occurred in the presence of Zn2 +. Therefore, this unusual dimerization process may be applicable to designing proteins possessing a short zinc-binding loop with a novel regulatory role.  相似文献   

16.
Xenobiotic reductase A (XenA) from Pseudomonas putida 86 catalyzes the NADH/NADPH-dependent reduction of various substrates, including 2-cyclohexenone and 8-hydroxycoumarin. XenA is a member of the old yellow enzyme (OYE) family of flavoproteins and is structurally and functionally similar to other bacterial members of this enzyme class. A characteristic feature of XenA is the presence of a cysteine residue (Cys25) in the active site, where in most members of the OYE family a threonine residue is found that modulates the reduction potential of the FMN/FMNH- couple. We investigated the role of Cys25 by studying two variants in which the residue has been exchanged for a serine and an alanine residue. While the exchange against alanine has a remarkably small effect on the reduction potential, the reactivity and the structure of XenA, the exchange against serine increases the reduction potential by +82 mV, increases the rate constant of the reductive half-reaction and decreases the rate constant in the oxidative half-reaction. We determined six crystal structures at high to true atomic resolution (dmin 1.03-1.80 Å) of the three XenA variants with and without the substrate coumarin bound in the active site. The atomic resolution structure of XenA in complex with coumarin reveals a compressed active site geometry in which the isoalloxazine ring is sandwiched between coumarin and the protein backbone. The structures further reveal that the conformation of the active site and substrate interactions are preserved in the two variants, indicating that the observed changes are due to local effects only. We propose that Cys25 and the residues in its place determine which of the two half-reactions is rate limiting, depending on the substrate couple. This might help to explain why the genome of Pseudomonas putida encodes multiple xenobiotic reductases containing either cysteine, threonine or alanine in the active site.  相似文献   

17.
The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (Rfree = 21.2%) at 1.70 Å resolution and 15.8% (Rfree = 19.2%) at 1.85 Å resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly β-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity.  相似文献   

18.
Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn2+-dependent dipeptidase. The crystal structure of this protein in the Mn2+-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys155 and Cys178, are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.  相似文献   

19.
The tautomerase superfamily consists of structurally homologous proteins that are characterized by a β-α-β fold and a catalytic amino-terminal proline. 4-Oxalocrotonate tautomerase (4-OT) family members have been identified and categorized into five subfamilies on the basis of multiple sequence alignments and the conservation of key catalytic and structural residues. Representative members from two subfamilies have been cloned, expressed, purified, and subjected to kinetic and structural characterization. The crystal structure of DmpI from Helicobacter pylori (HpDmpI), a 4-OT homolog in subfamily 3, has been determined to high resolution (1.8 Å and 2.1 Å) in two different space groups. HpDmpI is a homohexamer with an active site cavity that includes Pro-1, but lacks the equivalent of Arg-11 and Arg-39 found in 4-OT. Instead, the side chain of Lys-36 replaces that of Arg-11 in a manner similar to that observed in the trimeric macrophage migration inhibitory factor (MIF), which is the title protein of another family in the superfamily. The electrostatic surface of the active site is also quite different and suggests that HpDmpI might prefer small, monoacid substrates. A kinetic analysis of the enzyme is consistent with the structural analysis, but a biological role for the enzyme remains elusive. The crystal structure of DmpI from Archaeoglobus fulgidus (AfDmpI), a 4-OT homolog in subfamily-4, has been determined to 2.4 Å resolution. AfDmpI is also a homohexamer, with a proposed active site cavity that includes Pro-1, but lacks any other residues that are readily identified as catalytic ones related to 4-OT activity. Indeed, the electrostatic potential of the active site differs significantly in that it is mostly neutral, in contrast to the usual electropositive features found in other 4-OT family members, suggesting that AfDmpI might accommodate hydrophobic substrates. A kinetic analysis has been carried out, but does not provide any clues about the type of reaction the enzyme might catalyze.  相似文献   

20.
The crystal structure of GcnA, an N-acetyl-β-d-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal α-helical domain has not been observed previously and forms a large dimerisation interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical (β/α)8 TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a family 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-β-d-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号