首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-γ (IFN-γ). In parallel, IFN-γ induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-κB (NF-κB) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-κB expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-κB activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-κB inducible reporter system.In cells stimulated with LPS, a significant induction of NF-κB was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-κB activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-κB, neopterin formation and trp degradation in monocytic THP-1 cells, which is elicited by pro-inflammatory triggers like LPS during innate immune responses.  相似文献   

3.
4.
5.
In the current study, we show evidence, in a fructose-fed hamster model of insulin resistance, that free fatty acid (FFA) can induce hepatic insulin resistance in part via PKC activation leading to increased production of atherogenic apoB100-containing lipoproteins. Interestingly, IκB-kinase β (IKKβ)-dependent NF-κB was activated in hepatocytes from the fructose-fed hamster as an indication for PKC activation. Treatment of hepatocytes with oleate for 16 h showed the activation of the PKC isoforms, PKCα/βII, in a dose dependent manner. Strikingly, the general PKC inhibitor, bisindolylmaleimide-I, Bis-I (5 μM) was found to ameliorate fructose-induced insulin resistance, restoring the phosphorylation status of PKB and suppressing apoB100 overproduction in ex vivo and in vivo. The data suggest that hepatic PKC activation, induced by increased circulating FFA may be an important factor in the development of insulin resistance and dyslipidemia seen in the fructose-fed hamster model.  相似文献   

6.
This study investigated the potential mechanisms that may underlie diabetes induced amyoatrophy. Sprague-Dawley rats were either injected intraperiotneally with STZ (test group; N = 8) to induce diabetic-like symptoms (blood glucose level ≥16.65 mmol/L) or with buffer (control group; N = 8). Differences in muscle structure between the STZ-induced diabetic and control groups were evaluated by histochemistry. Protein and mRNA levels of basic FGF (bFGF), bax, bcl-2, and caspase 3 in skeletal muscle were compared between the 2 groups using immunohistochemistry and quantitative PCR, respectively. Serum level of insulin and protein kinase C (PKC) were measured by competitive RIA and ELISA, respectively. Unlike control animals, the skeletal muscle fibers from STZ-induced diabetic animals were broken and pyknotic, the sarcomeric structure disrupted, and mild hyperplasia of interstitial adipose tissues was detected. The serum level of PKC was higher (P = 0.003) and the protein and mRNA levels of bFGF in skeletal muscle were lower (P = 0.001) in STZ-induced diabetic versus control animals. Protein and mRNA levels of the apoptosis promoting genes caspase-3 and bax were higher in skeletal muscle from STZ-induced diabetic rats as compared to control animals (P < 0.001 and P = 0.037, respectively), while mRNA and protein levels of bcl-2, an inhibitor of apoptosis, was lower in STZ-induced diabetic rats versus control animals (P = 0.026). Increasing apoptosis in skeletal muscle from STZ-induced diabetic rats was further demonstrated by TNNEL assay. Our findings suggest that enhanced PKC levels, reduction of bFGF expression, and increased in apoptosis might be associated with the development of diabetes-induced myoatrophy.  相似文献   

7.
8.
9.
Oxidative stress is considered to play an important role in inducing the pancreatic β-cells apoptosis and promoting the development of diabetes mellitus. Tangeretin is a plant-derived flavonoid that retains antidiabetic effects. However, the role of tangeretin in streptozotocin (STZ)-induced β-cell apoptosis remains unclear. In this study, we aimed to examine the effects of tangeretin on STZ-induced cell apoptosis and the underlying mechanisms implicated in vitro. Our results showed that tangeretin improved the cell viability in STZ-induced INS-1 cells. Tangeretin reduced the increase of apoptosis ratio and revered the altered expressions of Bax and Bcl-2 caused by STZ induction. Furthermore, the impairment of insulin secretion ability as well as a reduction in messenger RNA levels of insulin 1 and 2 was significantly attenuated by tangeretin in STZ-induced INS-1 cells. Moreover, tangeretin resulted in a significant decrease in reactive oxygen species content, accompanied by an evident increase in the activities of superoxide dismutase, catalase, and glutathione peroxidase. Mechanistic studies further revealed that tangeretin inhibited the NF-κB pathway in STZ-induced INS-1 cells. These data indicated that tangeretin improved the cell apoptosis induced by STZ in INS-1 cells, which might be partly due to its antioxidant potential. Furthermore, NF-κB was found to be involved in the protective effect of tangeretin. Collectively, the results indicated that tangeretin could be used as a therapeutic approach for diabetes mellitus treatment.  相似文献   

10.
11.
12.
13.
14.
Methotrexate was first introduced as a cytotoxic agent that inhibits nucleotide biosynthesis in various cancer disorders; its molecular mechanism remains elusive. To understand the molecular mechanism by which methotrexate induces apoptosis, we analyzed the resulting intracellular protein changes in methotrexate-treated acute promyelocytic leukaemia (HL-60) cells by cysteine-labeled differential in-gel electrophoresis (CL-DIGE) combined with mass spectrometry. Initial CL-DIGE analysis revealed that 24 proteins were differentially expressed (p < 0.05) in the HL-60 cell proteome after treatment with 2.5 µM methotrexate for 72 h. We found that three structural α4, α5, α7 proteasome subunits, a non-catalytic β3 and two 26S regulatory proteasome subunits were down-regulated in methotrexate-treated HL-60 cells. Western blot analyses further showed that the inhibition of proteasome subunits is accompanied by suppression of NF-κB subunits and promotes the accumulation of ubiquitinated proteins. Furthermore, methotrexate activated unfolded protein response by inducing the expression of endoplasmic reticulum-resident proteins such as calreticulin, protein disulphide isomerase A3 and A4, and 78 kDa glucose regulated protein in a time-dependent manner. Altogether, our findings demonstrated that targeting NF-κB, structural and regulatory proteasome subunits with methotrexate may provide new insight into understanding methotrexate-induced apoptotic activities in HL-60 cells.  相似文献   

15.
16.
We investigated whether pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) ameliorates kidney injury after ischemia/reperfusion (IR) by modulating Toll-like receptor (TLR)-associated signaling pathways. Male C57BL/6 mice were subjected to bilateral renal ischemia for 45 min. PACAP38, 20 μg in 100 μl of saline, was administered i.p. at 24 and 48 h after IR, and mice were euthanized at 72 h. In IR mice, PACAP38 maintained serum creatinine near control levels (0.81 ± 0.08 vs. 0.69 ± 0.17 mg/dl in controls, p = NS, vs. 1.8 ± 0.03 in saline-treated IR mice, p < 0.01) and significantly reduced the expression of kidney injury biomarkers. PACAP38 significantly reduced the levels of apoptosis and neutrophil infiltration, and protected against tubular damage. With PCR arrays, 59 of 83 TLR-related genes significantly changed their expression after IR. TLR2 increased 162 fold, followed by Fas-associated death domain (37 fold) and TLR6 (24 fold), while ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1) decreased 55 fold. PACAP38 given 24 and 48 h after IR injury significantly reversed these changes in 56 genes, including TLR2, TLR3, TLR4, TLR6, and genes in the NF-κB pathways. The alterations in TLR2, TLR3, TLR6, and UBE2V1 were confirmed by RT-PCR. After IR, PACAP38 also suppressed protein levels of TLR-associated cytokines. PACAP38 reversed the changes in IR-activated TLR-associated NF-κB signaling pathways even when treatment was delayed 24 h. Therefore, PACAP38 could be an effective therapeutic for unexpected IR-mediated renal injury. The prominently IR-induced TLR-related genes identified in this study could be novel drug targets.  相似文献   

17.
Diabetic nephropathy (DN) is one of the major long-term complications of diabetes. Lysophosphatidic acid (LPA) signaling has been implicated in renal fibrosis. In our previous study, we found that the LPA receptor 1/3 (LPAR1/3) antagonist, ki16425, protected against DN in diabetic db/db mice. Here, we investigated the effects of a specific pharmacological inhibitor of LPA receptor 1 (LPA1), AM095, on DN in streptozotocin (STZ)-induced diabetic mice to exclude a possible contribution of LPAR3 inhibition. AM095 treatment significantly reduced albuminuria and the albumin to creatinine ratio and significantly decreased the glomerular volume and tuft area in the treated group compared with the STZ-vehicle group. In the kidney of STZ-induced diabetic mice, the expression of LPAR1 mRNA and protein was positively correlated with oxidative stress. AM095 treatment inhibited LPA-induced reactive oxygen species production and NADPH oxidase expression as well as LPA-induced toll like receptor 4 (TLR4) expression in mesangial cells and in the kidney of STZ-induced diabetic mice. In addition, AM095 treatment suppressed LPA-induced pro-inflammatory cytokines and fibrotic factors expression through downregulation of phosphorylated NFκBp65 and c-Jun N-terminal kinases (JNK) in vitro and in the kidney of STZ-induced diabetic mice. Pharmacological or siRNA inhibition of TLR4 and NADPH oxidase mimicked the effects of AM095 in vitro. In conclusion, AM095 is effective in preventing the pathogenesis of DN by inhibiting TLR4/NF-κB and the NADPH oxidase system, consequently inhibiting the inflammatory signaling cascade in renal tissue of diabetic mice, suggesting that LPAR1 antagonism might provide a potential therapeutic target for DN.  相似文献   

18.
Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the l-arginine (l-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of l-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each l-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of l-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.  相似文献   

19.
Kumar A  Negi G  Sharma SS 《Biochimie》2012,94(5):1158-1165
Inflammation is an emerging patho-mechanism of diabetes and its complications. NF-κB pathway is one of the central machinery initiating and propagating inflammatory responses. The present study envisaged the involvement of NF-κB inflammatory cascade in the pathophysiology of diabetic neuropathy using BAY 11-7082, an IκB phosphorylation inhibitor. Streptozotocin was used to induce diabetes in Sprauge Dawley rats. BAY 11-7082 (1 &; 3 mg/kg) was administered to diabetic rats for 14 days starting from the end of six weeks post diabetic induction. Diabetic rats developed deficits in nerve functions and altered nociceptive parameters and also showed elevated expression of NF-κB (p65), IκB and p-IκB along with increased levels of IL-6 &; TNF-α and inducible enzymes (COX-2 and iNOS). Furthermore, there was an increase in oxidative stress and decrease in Nrf2/HO-1 expression. We observed that BAY 11-7082 alleviated abnormal sensory responses and deficits in nerve functions. BAY 11-7082 also ameliorated the increase in expression of NF-κB, IκB and p-IκB. BAY 11-7082 curbed down the levels of IL-6, TNF-α, COX-2 and iNOS in the sciatic nerve. Lowering of lipid peroxidation and improvement in GSH levels was also seen along with increased expression of Nrf2/HO-1. Thus it can be concluded that NF-κB expression and downstream expression of proinflammatory mediators are prominent features of nerve damage leading to inflammation and oxidative stress and BAY 11-7082 was able to ameliorate experimental diabetic neuropathy by modulating neuroinflammation and improving antioxidant defence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号