首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Inflammation is a system used by a host to defend against the presence of bacteria, viruses, or yeasts. Toll-like receptors (TLRs) in the plasma membranes of macrophages are activated when they recognize the molecular structure of a virus or bacterium. Lipopolysaccharide (LPS), an outer cell-wall component of Gram-negative bacteria, initiates an inflammatory process via TLR4. We investigated the effect of the extract of Anethum graveloens flowers (AGFs) on LPS-mediated inflammation in RAW 264.7 cells. The extract markedly suppressed nitric oxide generation in a concentration-dependent manner in LPS-stimulated RAW 264.7 cells. It inhibited inducible nitric oxide synthase (iNOS) and the mRNA expression of cytokines such as interleukin-1 beta and interleukin-6 in LPS-stimulated RAW 264.7 cells. It also inhibited iNOS protein levels in LPS-stimulated RAW 264.7 cells. In addition, AGF decreased the LPS-induced phosphorylation of mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. AGF inhibited the phosphorylation of Akt, an upstream molecule of the nuclear factor kappa B (NF-κB) pathway, and thus inhibited NF-κB activity in LPS-stimulated RAW 264.7 cells. These results suggest that AGF exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells by inhibiting iNOS expression and blocking the NF-κB pathway.  相似文献   

3.
Inflammation is a system used by a host to defend against the presence of bacteria, viruses, or yeasts. Toll-like receptors (TLRs) in the plasma membranes of macrophages are activated when they recognize the molecular structure of a virus or bacterium. Lipopolysaccharide (LPS), an outer cell-wall component of Gram-negative bacteria, initiates an inflammatory process via TLR4. We investigated the effect of the extract of Anethum graveloens flowers (AGFs) on LPS-mediated inflammation in RAW 264.7 cells. The extract markedly suppressed nitric oxide generation in a concentration-dependent manner in LPS-stimulated RAW 264.7 cells. It inhibited inducible nitric oxide synthase (iNOS) and the mRNA expression of cytokines such as interleukin-1 beta and interleukin-6 in LPS-stimulated RAW 264.7 cells. It also inhibited iNOS protein levels in LPS-stimulated RAW 264.7 cells. In addition, AGF decreased the LPS-induced phosphorylation of mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. AGF inhibited the phosphorylation of Akt, an upstream molecule of the nuclear factor kappa B (NF-κB) pathway, and thus inhibited NF-κB activity in LPS-stimulated RAW 264.7 cells. These results suggest that AGF exerts an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells by inhibiting iNOS expression and blocking the NF-κB pathway.  相似文献   

4.
The spice-derived phenolic, malabaricone C (mal C), has recently been shown to accelerate healing of the indomethacin-induced gastric ulceration in mice. In this study, we explored its anti-inflammatory activity and investigated the underlying mechanism of the action. Mal C suppressed the microvascular permeability and the levels of tumor necrosis factor-α, interleukin-1β, and nitric oxide in the lipopolysaccharide (LPS)-administered mice. At a dose of 10 mg/kg, it showed anti-inflammatory activity comparable to that of omeprazole (5 mg/kg) and dexamethasone (50 mg/kg). It also reduced the expression and activities of inducible nitric oxide synthase, cyclooxygenase-2, as well as the pro- vs anti-inflammatory cytokine ratio in the LPS-treated RAW macrophages. Mal C was found to inhibit LPS-induced NF-kB activation in RAW 264.7 cells by blocking the MyD88-dependent pathway. Mal C suppressed NF-κB activation and iNOS promoter activity, which correlated with its inhibitory effect on IκB phosphorylation and degradation, and NF-κB nuclear translocation, in the LPS-stimulated macrophages. It also inhibited LPS-induced phosphorylation of p38 and JNK, which are also upstream activators of NF-κB, without affecting Akt phosphorylation. Mal C also effectively blocked the PKR-mediated activation of NF-κB. These findings indicate that mal C exerts an anti-inflammatory effect through NF-κB-responsive inflammatory gene expressions by inhibiting the p38 and JNK-dependent canonical NF-κB pathway as well as the PKR pathway, and is a potential therapeutic agent against acute inflammation.  相似文献   

5.
AimsWe investigated the effects of globin digest (GD) and its active ingredient Trp-Thr-Gln-Arg (WTQR) on galactosamine/lipopolysaccharide (GalN/LPS)-induced liver injury in imprinting control region (ICR) mice.Main methodsThe effects of WTQR and GD on the liver injury were examined by measuring the survival rate, serum aminotransferase activities, hepatic components, antioxidant enzyme activities, histopathological analysis, serum levels and hepatic gene expression of tumor necrosis factor-alpha (TNF-α), macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) or inducible nitric oxide synthase (iNOS), and nuclear factor-kappa B (NF-κB) p65 content in GalN/LPS-treated ICR mice. RAW264 mouse macrophages were used to confirm the anti-inflammatory effects of WTQR and GD on the macrophages.Key findingsWTQR and GD increased the survival rate, suppressed the serum aminotransferase activities, serum levels and hepatic gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in GalN/LPS-treated mice; decreased the oxidized glutathione content, increased the superoxide dismutase activity, and decreased the histopathological grade values of the hepatocyte necrosis and lobular inflammation in GalN/LPS-injured liver; and suppressed the release levels and gene expression of TNF-α, MIP-2, and NO or iNOS, and nuclear NF-κB p65 content in LPS-stimulated RAW264 macrophages. WTQR and GD may improve the antioxidant defense system and inflammatory status in GalN/LPS-injured liver.SignificanceThese findings indicate that WTQR and GD have hepatoprotective effects on GalN/LPS-induced liver injury in ICR mice.  相似文献   

6.
7.
用姜黄素预处理小胶质细胞株BV,1 h后加用脂多糖(200 ng/ml)进行刺激,通过MTT检测细胞活性;硝酸还原酶法检测细胞上清液中一氧化氮(NO)的含量;Western 印迹、免疫细胞化学染色检测细胞活化后形态及诱导型一氧化氮合酶(iNOS)蛋白的表达;瞬时转染和荧光素酶报告基因鉴定iNOS和NF-κB基因表达活性;SOD和GSH-Px检测姜黄素的抗氧化能力.结果证明,脂多糖可促使小胶质细胞活化,使iNOS和NF-κB基因表达活性显著增强;iNOS蛋白表达明显上调,NO释放增多;细胞内SOD和GSH-Px活性明显下降.而姜黄素(10 μmol/L)可以显著抑制活化后小胶质细胞NO的产生、iNOS蛋白的表达及iNOS-Luc、NF-κB-Luc的表达活性,其机制可能通过NF-κB的信号转导途径抑制iNOS的表达.姜黄素可通过提高细胞内SOD和GSH-Px的活性发挥抗氧化作用.  相似文献   

8.
9.
The anti-inflammatory properties of soyasaponins (especially soyasaponins with different chemical structures) have scarcely been investigated. We investigated the inhibitory effects of five structural types of soyasaponins (soyasaponin A1, A2, I and soyasapogenol A, B) on the induction of nitric oxide (NO) and inducible NO synthase (iNOS) in murine RAW 264.7 cells activated with lipopolysaccharide (LPS). Soyasaponin A1, A2 and I (25-200 μg/mL) dose-dependently inhibited the production of NO and tumor necrosis factor α (TNF-α) in LPS-activated macrophages, whereas soyasapogenol A and B did not. Furthermore, soyasaponin A1, A2 and I suppressed the iNOS enzyme activity and down-regulated the iNOS mRNA expression both in a dose-dependent manner. The reporter gene assay revealed that soyasaponin A1, A2 and I decreased LPS-induced nuclear factor kappa B (NF-κB) activity. Soyasaponin A1, A2 and I exhibit anti-inflammatory properties by suppressing NO production in LPS-stimulated RAW 264.7 cells through attenuation of NF-κB-mediated iNOS expression. It is proposed that the sugar chains present in the structures of soyasaponins are important for their anti-inflammatory activities. These results have important implication for using selected soyasaponins towards the development of effective chemopreventive and anti-inflammatory agents.  相似文献   

10.
Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-α expression through suppression of I-κBα phosphorylation, NF-κB nuclear activation and PKC-α translocation, which in turn inhibits Ca2+ mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-κB and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.  相似文献   

11.
12.
In inflammation, nitric oxide (NO) acts as a pro-inflammatory mediator, which is synthesized by inducible nitric oxide synthase (iNOS) in response to pro-inflammatory agents such as lipopolysaccharide (LPS). Quercetin (Qt) has anti-inflammatory properties through its ability to inhibits nitric oxide production and iNOS expression in different cellular types. In the present study, we evaluated the effect of a semi-synthetic acetyl (quercetin-3,5,7,3′-tetraacetyl: TAQt) Qt derivative and two natural sulphated (quercetin-3-acetyl-7,3′,4′-trisulphate: ATS and quercetin-3,7,3′,4′-tetrasulphate: QTS) Qt derivatives on the LPS-induced NO production and iNOS expression in J774A.1 cells. Our results demonstrate that only TAQt inhibited the NO production by decreasing the iNOS mRNA and protein levels. In addition, we showed that TAQt blocked the LPS-induced nuclear NF-κB translocation by inhibiting the IκB-α degradation. Hence, as TAQt inhibited the LPS-induced iNOS expression and NO production, it could therefore be considered as a potential therapeutic agent for the treatment of inflammatory diseases related with the NO system.  相似文献   

13.
In our previous studies, structurally similar compounds of ascochlorin and ascofuranone exhibited anti-inflammatory activity. Neural inflammation plays a significant role in the commence and advancement of neurodegenerative diseases. It is not known whether 4-O-carboxymethylascochlorin (AS-6) regulates the initial stage of inflammatory responses at the cellular level in BV2 microglia cells. We here investigated the anti-inflammatory effects of AS-6 treatment in microglia cells with the microglial protection in neurons. We found that the lipopolysaccharide (LPS)-stimulated production of nitric oxide, a main regulator of inflammation, is suppressed by AS-6 in BV2 microglial cells. In addition, AS-6 dose-dependently suppressed the increase in COX-2 protein and messenger RNA levels in LPS-stimulated BV2 cells. Moreover, AS-6 inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. At the intracellular level, AS-6 inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells. AS-6 negatively affected mitogen-activated protein kinases (MAPK) and Akt phosphorylation: Phosphorylated forms of ERK, JNK, p38, and Akt decreased. To check whether AS-6 protects against inflammatory inducer-mediated neurotoxicity, neuronal SH-SY5Y cells were coincubated with BV2 cells in conditioned medium. AS-6 exerted a neuroprotective effect by suppressing microglial activation by LPS or amyloid-β peptide. AS-6 is a promising suppressor of inflammatory responses in LPS-induced BV2 cells by attenuating NF-κB and MAPKs signaling. AS-6 protected against microglial-mediated neurotoxicity in SH-SY5Y and BV2 cocultured cells from LPS–induced neuroinflammation and death via inhibiting MAPK, NF-κB, and Akt pathways.  相似文献   

14.
The biological activity of Mastixia arborea (MA) relates to inflammation, but the underlying mechanisms are largely unknown. We confirmed the anti-inflammatory effects of a methanol extract of MA extract on lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells and carrageenan-induced mice paw edema. The MA extract significantly inhibited nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and IL-6 production in LPS-stimulated RAW264.7 cells. In vitro expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was suppressed by the extract. The extract attenuated acute inflammatory responses in carrageenan-induced mice paw edema. A mechanism study indicated that translocation of the NF-κB (p65) subunit into the nucleus and phosphorylation of ERK and JNK were inhibited by the extract. These results indicate that the extract is an effective suppressor of the inflammatory response, blocking the phosphorylation of ERK and JNK and the translocation of NF-κB in macrophages, thereby producing an anti-inflammatory effect in vivo.  相似文献   

15.
16.
17.
Neuroinflammation mediated by microglia has been identified as vital pathogenesis in Parkinson's disease (PD). This study aimed to investigate the role and potential regulatory mechanism of microRNA-330 in the lipopolysaccharide (LPS)-induced chronic neuroinflammatory model. Primary microglia chronic inflammation model and PD animal model were established by LPS treatment. Bulged microRNA-330 sponges containing six microRNA binding sites were constructed and delivered by plasmid or recombinant adeno-associated virus (rAAV2)/5-green fluorescent protein (GFP) vector. The expression levels of microRNA-330 were assessed by a quantitative real-time polymerase chain reaction. Primary microglia polarization was determined by flow cytometry; meanwhile, dopamine and pro-(anti-)inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Expression levels of GFAP, lba1, inducible nitric oxide synthase (iNOS), Arg1, SHIP1, cytoplasmic, and nuclear factor-κB (NF-κB) were analyzed by Western blot. The behavioral deficit was determined by the rotarod test. The expression of microRNA-330 increased in the first 4 days and reached a plateau subsequently after LPS treatment. The sponges-mediated repression effect on M1 polarization was gradually enhanced with time. Treatment of miR-330 sponges increased the SHIP1 and Arg1 expression, and decreased the translocation of NF-κB and iNOS expression, suggesting the repression of inflammation. In the LPS-induced PD mice, administration of rAAV-sponge-GFP suppressed activation of microglia, downregulated proinflammatory cytokines, resumed the secretion of dopamine, rescued the dopaminergic neurons, and alleviated motor dysfunction. Our results demonstrated that microRNA-330 sponges could sustainably suppress LPS-induced polarization of microglia both in vivo and in vitro probably by negatively regulating NF-κB activity via target SHIP1 in microglia, which might be a promising neuroprotective strategy in neurological diseases, such as PD.  相似文献   

18.
19.
20.
Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号