首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UDP-glucose:glycoprotein glucosyltransferase plays a key role in glycoprotein quality control in the endoplasmic reticulum, by virtue of its ability to discriminate folding states. Although lines of evidence have clarified the ability of UGGT to recognize a partially unfolded protein, its mechanistic rationale has been obscure. In this study, the substrate recognition mechanism of UGGT was studied using synthetic substrate of UGGT. Although UGGT has high extent of surface hydrophobicity, it clearly lacks property of typical molecular chaperones. Furthermore, it was revealed that the addition of the substrate caused secondary structure change of UGGT in a dose-dependent manner, resulting that the Kd value of the UGGT-substrate interaction was estimated from theoretical formula based on 1:1 complexation between UGGT and the acceptor substrate. Moreover, the kinetic analysis of glucosyltransferase activity of UGGT elucidated Michaelis constant Km correctly.  相似文献   

2.
Secretory and membrane N-linked glycoproteins undergo folding and oligomeric assembly in the endoplasmic reticulum with the aid of a folding mechanism known as the calnexin cycle. UDP–glucose glycoprotein:glucosyltransferase (UGGT) is the sensor component of the calnexin cycle, which recognizes these glycoproteins when they are incompletely folded, and transfers a glucose residue from UDP–glucose to N-linked Man9-GlcNAc2 glycans. To determine how UGGT recognizes incompletely folded glycoproteins, we used purified enzyme to glucosylate a set of Man9-GlcNAc2 glycopeptide substrates in vitro, and determined quantitatively the glucose incorporation into each glycan by mass spectrometry. A ranked order of glycopeptide specificity was found that provides the criteria for the recognition of substrates by UGGT. The preference for amino-acid residues close to N-linked glycans provides criteria for the recognition of glycopeptide substrates by UGGT.  相似文献   

3.
The potassium ion channel Kv3.1b is a member of a family of voltage‐gated ion channels that are glycosylated in their mature form. In the present study, we demonstrate the impact of N‐glycosylation at specific asparagine residues on the trafficking of the Kv3.1b protein. Large quantities of asparagine 229 (N229)‐glycosylated Kv3.1b reached the plasma membrane, whereas N220‐glycosylated and unglycosylated Kv3.1b were mainly retained in the endoplasmic reticulum (ER). These ER‐retained Kv3.1b proteins were susceptible to degradation, when co‐expressed with calnexin, whereas Kv3.1b pools located at the plasma membrane were resistant. Mass spectrometry analysis revealed a complex type Hex3HexNAc4Fuc1 glycan as the major glycan component of the N229‐glycosylated Kv3.1b protein, as opposed to a high‐mannose type Man8GlcNAc2 glycan for N220‐glycosylated Kv3.1b. Taken together, these results suggest that trafficking‐dependent roles of the Kv3.1b potassium channel are dependent on N229 site‐specific glycosylation and N‐glycan structure, and operate through a mechanism whereby specific N‐glycan structures regulate cell surface expression.  相似文献   

4.
The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16–0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1.  相似文献   

5.
UDP-Glucose:glycoprotein glucosyltransferase (UGGT) is a central component of the endoplasmic reticulum (ER) glycoprotein-folding quality control system, which prevents the exit of partially folded species. UGGT activity can be regulated by the accumulation of misfolded proteins in the ER, a stimulus that triggers a complex signaling pathway known as unfolded protein response (UPR) which is closely associated with inflammation and disease. In this work, we investigated the effect of progesterone (P4) on the expression and activity of UGGT in a mouse hybridoma. We detected the expression of two UGGT isoforms, UGGT1 and UGGT2, and demonstrated that both isoforms are active in these cells. Interestingly, the expression of each isoform is regulated by high physiological P4 concentrations. This work provides the first evidence of a hormonal regulation of UGGT isoform expression and activity, which might influence the glycoprotein quality control mechanism. These findings could contribute to the study of pathologies triggered by the accumulation of misfolded proteins.  相似文献   

6.
7.
Chitosan (CS) and dextran sulfate (DS) are charged polysaccharides (glycans), which form polyelectrolyte complex-based nanoparticles when mixed under appropriate conditions. The glycan nanoparticles are useful carriers for protein factors, which facilitate the in vivo delivery of the proteins and sustain their retention in the targeted tissue. The glycan polyelectrolyte complexes are also ideal for protein delivery, as the incorporation is carried out in aqueous solution, which reduces the likelihood of inactivation of the proteins. Proteins with a heparin-binding site adhere to dextran sulfate readily, and are, in turn, stabilized by the binding. These particles are also less inflammatory and toxic when delivered in vivo. In the protocol described below, SDF-1α (Stromal cell-derived factor-1α), a stem cell homing factor, is first mixed and incubated with dextran sulfate. Chitosan is added to the mixture to form polyelectrolyte complexes, followed by zinc sulfate to stabilize the complexes with zinc bridges. The resultant SDF-1α-DS-CS particles are measured for size (diameter) and surface charge (zeta potential). The amount of the incorporated SDF-1α is determined, followed by measurements of its in vitro release rate and its chemotactic activity in a particle-bound form.  相似文献   

8.
Cellobiohydrolase from Melanocarpus albomyces (Cel7B) is a thermostable, single-module, cellulose-degrading enzyme. It has relatively low catalytic activity under normal temperatures, which allows structural studies of the binding of unmodified substrates to the native enzyme. In this study, we have determined the crystal structure of native Ma Cel7B free and in complex with three different cello-oligomers: cellobiose (Glc2), cellotriose (Glc3), and cellotetraose (Glc4), at high resolution (1.6–2.1 Å). In each case, four molecules were found in the asymmetric unit, which provided 12 different complex structures. The overall fold of the enzyme is characteristic of a glycoside hydrolase family 7 cellobiohydrolase, where the loops extending from the core β-sandwich structure form a long tunnel composed of multiple subsites for the binding of the glycosyl units of a cellulose chain. The catalytic residues at the reducing end of the tunnel are conserved, and the mechanism is expected to be retaining similarly to the other family 7 members. The oligosaccharides in different complex structures occupied different subsite sets, which partly overlapped and ranged from −5 to +2. In four cellotriose and one cellotetraose complex structures, the cello-oligosaccharide also spanned over the cleavage site (−1/+1). There were surprisingly large variations in the amino acid side chain conformations and in the positions of glycosyl units in the different cello-oligomer complexes, particularly at subsites near the catalytic site. However, in each complex structure, all glycosyl residues were in the chair (4C1) conformation. Implications in relation to the complex structures with respect to the reaction mechanism are discussed.  相似文献   

9.
Protozoan parasites of the genus Leishmania secrete a range of proteophosphoglycans (PPG) known to be important for successful colonization of Leishmania in the sandfly and for virulence in the mammalian host. PPGs are a large family of extensively glycosylated proteins with some unusual and unique features. In this study we purified PPG from culture supernatant of Leishmania major metacyclic promastigotes. In discontinuous SDS-PAGE, PPG could not enter the resolving gel but after mild acid hydrolysis several bands resolved. Agarose gel electrophoresis and immunoblot analysis using monoclonal antibody (WIC 79.3) indicated that the PPG preparation consisted of heterogeneous molecules. Compositional analysis showed that the PPG preparation contained 67% glycan, 28% protein and 5% phosphate. Additionally, the effect of PPG on reactive oxygen species (ROS) production and induction of IL-10, IL-12 and IFN-γ secretion by human peripheral blood mononuclear cells (PBMCs) isolated from healthy individuals was investigated. The water-soluble secreted form of PPG at a concentration of 1 μg glycan/ml seems to be a potent inducer of ROS and IL-10 and to a lesser extent of IFN-γ and IL-12. Cytokines and ROS production was decreased in a dose-dependent manner as the concentration of PPG was increased to 100 μg glycan/ml.  相似文献   

10.
Nucleotide-binding cystathionine β-synthase (CBS) domains serve as regulatory units in numerous proteins distributed in all kingdoms of life. However, the underlying regulatory mechanisms remain to be established. Recently, we described a subfamily of CBS domain-containing pyrophosphatases (PPases) within family II PPases. Here, we express a novel CBS-PPase from Clostridium perfringens (CPE2055) and show that the enzyme is inhibited by AMP and activated by a novel effector, diadenosine 5′,5-P1,P4-tetraphosphate (AP4A). The structures of the AMP and AP4A complexes of the regulatory region of C. perfringens PPase (cpCBS), comprising a pair of CBS domains interlinked by a DRTGG domain, were determined at 2.3 Å resolution using X-ray crystallography. The structures obtained are the first structures of a DRTGG domain as part of a larger protein structure. The AMP complex contains two AMP molecules per cpCBS dimer, each bound to a single monomer, whereas in the activator-bound complex, one AP4A molecule bridges two monomers. In the nucleotide-bound structures, activator binding induces significant opening of the CBS domain interface, compared with the inhibitor complex. These results provide structural insight into the mechanism of CBS-PPase regulation by nucleotides.  相似文献   

11.
C-type lectins are innate receptors expressed on antigen-presenting cells that are involved in the recognition of glycosylated pathogens and self-glycoproteins. Upon ligand binding, internalization and/or signaling often occur. Little is known on the glycan specificity and ligands of the Dendritic Cell Immunoreceptor (DCIR), the only classical C-type lectin that contains an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM). Here we show that purified DCIR binds the glycan structures Lewisb and Man3. Interestingly, binding could not be detected when DCIR was expressed on cells. Since DCIR has an N-glycosylation site inside its carbohydrate recognition domain (CRD), we investigated the effect of this glycan in ligand recognition. Removing or truncating the glycans present on purified DCIR increased the affinity for DCIR-binding glycans. Nevertheless, altering the glycosylation status of the DCIR expressing cell or mutating the N-glycosylation site of DCIR itself did not increase glycan binding. In contrast, cis and trans interactions with glycans induced DCIR mediated signaling, resulting in a decreased phosphorylation of the ITIM sequence. These results show that glycan binding to DCIR is influenced by the glycosylation of the CRD region in DCIR and that interaction with its ligands result in signaling via its ITIM motif.  相似文献   

12.
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents.  相似文献   

13.
It is well documented that glycan synthesis is altered in some pathological processes, including cancer. The most frequently observed alterations during tumourigenesis are extensive expression of β1,6-branched complex type N-glycans, the presence of poly-N-acetyllactosamine structures, and high sialylation of cell surface glycoproteins. This study investigated two integrins, α3β1 and αvβ3, whose expression is closely related to cancer progression. Their oligosaccharide structures in two metastatic melanoma cell lines (WM9, WM239) were analysed with the use of matrix-assisted laser desorption ionisation mass spectrometry. Both examined integrins possessed heavily sialylated and fucosylated glycans, with β1,6-branches and short polylactosamine chains. In WM9 cells, α3β1 integrin was more variously glycosylated than αvβ3; in WM239 cells the situation was the reverse. Functional studies (wound healing and ELISA integrin binding assays) revealed that the N-oligosaccharide component of the tested integrins influenced melanoma cell migration on vitronectin and α3β1 integrin binding to laminin-5. Additionally, more variously glycosylated integrins exerted a stronger influence on these parameters. To the best of our knowledge, this is the first report concerning structural characterisation of αvβ3 integrin glycans in melanoma or in any cancer cells.  相似文献   

14.
Discoidin I (DiscI) and discoidin II (DiscII) are N-acetylgalactosamine (GalNAc)-binding proteins from Dictyostelium discoideum. They consist of two domains: an N-terminal discoidin domain and a C-terminal H-type lectin domain. They were cloned and expressed in high yield in recombinant form in Escherichia coli. Although both lectins bind galactose (Gal) and GalNAc, glycan array experiments performed on the recombinant proteins displayed strong differences in their specificity for oligosaccharides. DiscI and DiscII bind preferentially to Gal/GalNAcβ1-3Gal/GalNAc-containing and Gal/GalNAcβ1-4GlcNAcβ1-6Gal/GalNAc-containing glycans, respectively. The affinity of the interaction of DiscI with monosaccharides and disaccharides was evaluated using isothermal titration calorimetry experiments. The three-dimensional structures of native DiscI and its complexes with GalNAc, GalNAcβ1-3Gal, and Galβ1-3GalNAc were solved by X-ray crystallography. DiscI forms trimers with involvement of calcium at the monomer interface. The N-terminal discoidin domain presents a structural similarity to F-type lectins such as the eel agglutinin, where an amphiphilic binding pocket suggests possible carbohydrate-binding activity. In the C-terminal H-type lectin domain, the GalNAc residue establishes specific hydrogen bonds that explain the observed affinity (Kd = 3 × 10− 4 M). The different specificities of DiscI and DiscII for oligosaccharides were rationalized from the different structures obtained by either X-ray crystallography or molecular modeling.  相似文献   

15.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   

16.
Myelin associated glycoprotein (Siglec-4) is a myelin adhesion receptor, that is, well established for its role as an inhibitor of axonal outgrowth in nerve injury, mediated by binding to sialic acid containing ligands on the axonal membrane. Because disruption of myelin-ligand interactions promotes axon outgrowth, we have sought to develop potent ligand based inhibitors using natural ligands as scaffolds. Although natural ligands of MAG are glycolipids terminating in the sequence NeuAcα2-3Galβ1-3(±NeuAcα2−6)GalNAcβ-R, we previously established that synthetic O-linked glycoprotein glycans with the same sequence α-linked to Thr exhibited ∼1000-fold increased affinity (∼1 μM). Attempts to increase potency by introducing a benzoylamide substituent at C-9 of the α2-3 sialic acid afforded only a two-fold increase, instead of increases of >100-fold observed for other sialoside ligands of MAG. Surprisingly, however, introduction of a 9-N-fluoro-benzoyl substituent on the α2-6 sialic acid increased affinity 80-fold, resulting in a potent inhibitor with a Kd of 15 nM. Docking this ligand to a model of MAG based on known crystal structures of other siglecs suggests that the Thr positions the glycan such that aryl substitution of the α2-3 sialic acid produces a steric clash with the GalNAc, while attaching an aryl substituent to the other sialic acid positions the substituent near a hydrophobic pocket that accounts to the increase in affinity.  相似文献   

17.
Six new triorganotin(IV) complexes, [R3Sn(O2SeC6H4Cl)]n (R = Me 1; Ph 2), [R3Sn(O2SeC6H4Me)]n (R = Me 3; Ph 4), [R3Sn(O2SeC6H4Bu)]n (R = Me 5; Ph 6) have been synthesized by the reaction of 4-chlorobenzeneseleninic acid, p-Tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with triorganotin(IV) chloride in the presence of sodium ethoxide. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy, and X-ray crystallography. Crystal structures show that all of the complexes exhibit 1D infinite chain structures which are generated by the bidentate oxygen atoms and the five-coordinated tin centers.  相似文献   

18.
The major allergen Der p 1 of the house dust mite Dermatophagoides pteronyssinus is a papain-like cysteine protease (CA1) produced as an inactive precursor and associated with allergic diseases. The propeptide of Der p 1 exhibits a specific fold that makes it unique in the CA1 propeptide family. In this study, we investigated the activation steps involved in the maturation of the recombinant protease Der p 1 expressed in Pichia pastoris and the interaction of the full-length and truncated soluble propeptides with their parent enzyme in terms of activity inhibition and BIAcore interaction analysis. According to our results, the activation of protease Der p 1 is a multistep mechanism that is characterized by at least two intermediates. The propeptide strongly inhibits unglycosylated and glycosylated recombinant Der p 1 (KD = 7 nM) at neutral pH. This inhibition is pH dependent. It decreases from pH 7 to pH 4 and can be related to conformational changes of the propeptide characterized by an increase of its flexibility and formation of a molten globule state. Our results indicate that activation of the zymogen at pH 4 is a compromise between activity preservation and propeptide unfolding.  相似文献   

19.
The amino acid sequence and glycan structure of PD-L1, PD-L2 and PD-L3, type 1 ribosome-inactivating proteins isolated from Phytolacca dioica L. leaves, were determined using a combined approach based on peptide mapping, Edman degradation and ESI-Q-TOF MS in precursor ion discovery mode. The comparative analysis of the 261 amino acid residue sequences showed that PD-L1 and PD-L2 have identical primary structure, as it is the case of PD-L3 and PD-L4. Furthermore, the primary structure of PD-Ls 1–2 and PD-Ls 3–4 have 81.6% identity (85.1% similarity). The ESI-Q-TOF MS analysis confirmed that PD-Ls 1–3 were glycosylated at different sites. In particular, PD-L1 contained three glycidic chains with the well known paucidomannosidic structure (Man)3 (GlcNAc)2 (Fuc)1 (Xyl)1 linked to Asn10, Asn43 and Asn255. PD-L2 was glycosylated at Asn10 and Asn43, and PD-L3 was glycosylated only at Asn10. PD-L4 was confirmed to be not glycosylated. Despite an overall high structural similarity, the comparative modeling of PD-L1, PD-L2, PD-L3 and PD-L4 has shown potential influences of the glycidic chains on their adenine polynucleotide glycosylase activity on different substrates.  相似文献   

20.
Trypanosoma brucei variant surface glycoproteins (VSG) are glycosylated by both paucimannose and oligomannose structures which are involved in the formation of a protective barrier against the immune system. Here, we report that the stinging nettle lectin (UDA), with predominant N-acetylglucosamine-binding specificity, interacts with glycosylated VSGs and kills parasites by provoking defects in endocytosis together with impaired cytokinesis. Prolonged exposure to UDA induced parasite resistance based on a diminished capacity to bind the lectin due to an enrichment of biantennary paucimannose and a reduction of triantennary oligomannose structures. Two molecular mechanisms involved in resistance were identified: VSG switching and modifications in N-glycan composition. Glycosylation defects were correlated with the down-regulation of the TbSTT3A and/or TbSTT3B genes (coding for oligosaccharyltransferases A and B, respectively) responsible for glycan specificity. Furthermore, UDA-resistant trypanosomes exhibited severely impaired infectivity indicating that the resistant phenotype entails a substantial fitness cost. The results obtained further support the modification of surface glycan composition resulting from down-regulation of the genes coding for oligosaccharyltransferases as a general resistance mechanism in response to prolonged exposure to carbohydrate-binding agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号