首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2–5) from human chromatin and replication origins. Dephosphorylation of the phosphorylated Orc2 by protein phosphatase 1 (PP1) is accompanied by the binding of the dissociated subunits to chromatin. Here we show that PP1 physically interacts with Orc2. The binding of PP1 to Orc2 and the dephosphorylation of Orc2 by PP1 occurred in a cell cycle-dependent manner through an interaction with 119-KSVSF-123, which is the consensus motif for the binding of PP1, of Orc2. The dephosphorylation of Orc2 by PP1 is required for the binding of Orc2 to chromatin. These results support that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin and replication origins for the subsequent round of the cell cycle.  相似文献   

2.
Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2-5) complex in the nucleus, an ORC(1-5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1-6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2-5) are transported independently to the nucleus where they can either assemble into ORC(1-6) or function individually.  相似文献   

3.
The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ.  相似文献   

4.
Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn2+-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity.  相似文献   

5.
Neuronal N-methyl-D-aspartate subtype of ionotropic glutamate receptor (NMDAR) that plays essential roles in excitatory synaptic transmission is regulated by phosphorylation. However, the kinases and phosphatases involved in this regulation are not completely known. We show that the GluN2B subunit of NMDAR is phosphorylated at Ser1303 by protein kinase C (PKC) and is dephosphorylated by protein phosphatase 1 (PP1), but not protein phosphatase 2A (PP2A) in isolated postsynaptic density (PSD). Although PSD is known to harbor PKC, PP1 and PP2A, their ability to regulate phosphorylation of GluN2B-Ser1303 would depend on the accessibility of GluN2B-Ser1303 to these proteins. Since PSD preparation is likely to maintain the organization of its component proteins as inside neurons, accessibility of kinases and phosphatases to GluN2B-Ser1303in vivo would be addressed by experiments using this system. Using an antibody specific for the phosphorylated state of GluN2B-Ser1303 we demonstrate that PP1 is the major phosphatase in rat brain PSD that can dephosphorylate the GluN2B-Ser1303 endogenous to PSD. We also show that PKC present in PSD can phosphorylate GluN2B-Ser1303. The events reported here might be important in regulating GluN2B-Ser1303 phosphorylation in vivo.  相似文献   

6.
Origin recognition complex (ORC), a six-protein complex (Orc1p-6p), is the most likely initiator of chromosomal DNA replication in eukaryotes. Although ORC of Saccharomyces cerevisiae has been studied extensively from biochemical and genetic perspectives, its quaternary structure remains unknown. Previous studies suggested that ORC has functions other than DNA replication, such as gene silencing, but the molecular mechanisms of these functions have not been determined. In this study, we used yeast two-hybrid analysis to examine the interaction between ORC subunits and to search for ORC-binding proteins. As well as the known Orc4p-Orc5p interaction, we revealed strong interactions between Orc2p and Ord3p (2p-3p), Orc2p and Ord5p (2p-5p), Orc2p and Ord6p (2p-6p) and Orc3p and Ord6p (3p-6p) and weaker interactions between Orc1p and Ord4p (1p-4p), Orc3p and Ord4p (3p-4p), Orc2p and Ord3p (3p-5p) and Orc5p and Ord3p (5p-6p). These results suggest that 2p-3p-6p may form a core complex. Orc2p and Orc6p are phosphorylated in vivo, regulating initiation of DNA replication. However, replacing the phosphorylated amino acid residues with others that cannot be phosphorylated, or that mimic phosphorylation, did not affect subunit interactions. We also identified several proteins that interact with ORC subunits; Sir4p and Mad1p interact with Orc2p; Cac1p and Ykr077wp with Orc3p; Rrm3p and Swi6p with Orc5p; and Mih1p with Orc6p. We discuss roles of these interactions in functions of ORC.  相似文献   

7.
Eukaryotic DNA replication begins with the binding of a six subunit origin recognition complex (ORC) to DNA. To study the assembly and function of mammalian ORC proteins in their native environment, HeLa cells were constructed that constitutively expressed an epitope-tagged, recombinant human Orc2 subunit that had been genetically altered. Analysis of these cell lines revealed that Orc2 contains a single ORC assembly domain that is required in vivo for interaction with all other ORC subunits, as well as two nuclear localization signals (NLSs) that are required for ORC accumulation in the nucleus. The recombinant Orc2 existed in the nucleus either as an ORC-(2-5) or ORC-(1-5) complex; no other combinations of ORC subunits were detected. Moreover, only ORC-(1-5) was bound to the chromatin fraction, suggesting that Orc1 is required in vivo to load ORC-(2-5) onto chromatin. Surprisingly, recombinant Orc2 suppressed expression of endogenous Orc2, revealing that mammalian cells limit the intracellular level of Orc2, and thereby limit the amount of ORC-(2-5) in the nucleus. Because this suppression required only the ORC assembly and NLS domains, these domains appear to constitute the functional domain of Orc2.  相似文献   

8.
The mechanism underlying targeting of the nuclear membrane to chromatin at the end of mitosis was studied using an in vitro cell-free system comprising Xenopus egg membrane and cytosol fractions, and sperm chromatin. The mitotic phase membrane, which was separated from a mitotic phase extract of Xenopus eggs and could not bind to chromatin, became able to bind to chromatin on pretreatment with a synthetic phase cytosol fraction of Xenopus eggs. When the cytosol fraction was depleted of protein phosphatase 1 (PP1) with anti-Xenopus PP1γ1 antibodies, this ability was lost. The addition of recombinant xPP1γ1 to the PP1-depleted cytosol fraction restored the ability. These and other results suggested that dephosphorylation of mitotic phosphorylation sites on membranes by PP1 in the synthetic phase cytosol fraction promoted targeting of the membranes to chromatin. On the other hand, a fragment containing the chromatin-binding domain of lamin B receptor (LBR) but not emerin inhibited targeting of membrane vesicles. It was also shown that PP1 dephosphorylates a phosphate group(s) responsible for regulation of the binding of LBR to chromatin. A possible mechanism involving PP1 and LBR for the regulation of nuclear membrane targeting to chromatin was discussed.  相似文献   

9.
Protein phosphatase type 1 (PP1) is one of the major classes of serine/threonine protein phosphatases, and has been found in all eukaryotic cells examined to date. Metazoans from Drosophila to humans have multiple genes encoding catalytic subunits of PP1 (PP1c), which are involved in a wide range of biological processes. Different PP1c isoforms have pleiotropic and overlapping functions; this has complicated the analysis of their biological roles and the identification of specific in vivo substrates. PP1c isoforms are associated in vivo with regulatory subunits that target them to specific locations and modify their substrate specificity and activity. The PP1c-binding proteins are therefore the key to understanding the role of PP1 in particular biological processes. The existence of isoform specific PP1c-binding subunits may also help to explain the unique roles of different PP1c isoforms. Here we report the identification of 24 genes encoding Drosophila PP1c-binding proteins in the yeast two-hybrid system. Sequence analysis identified a minimal interacting fragment and putative PP1c-binding motif for each protein, delimiting the region involved in binding to PP1c. Further two-hybrid analysis showed that virtually all of the interactors were capable of binding all Drosophila PP1c isoforms. One of the novel interactors, CG1553, was examined further and shown to interact with multiple isoforms by co-immunoprecipitation from Drosophila extracts and functional interaction with PP1c isoforms in vivo. Bioinformatic analyses implicate the putative PP1c-associated subunits in a diverse array of intracellular processes. Our identification of a large number of PP1c-binding proteins with the potential for directing PP1c's specific functions in Drosophila represents a significant step towards a full understanding of the range of PP1 complexes and function in animals.  相似文献   

10.
Origin recognition complex (ORC) is highly dynamic, with several ORC subunits getting posttranslationally modified by phosphorylation or ubiquitination in a cell cycle-dependent manner. We have previously demonstrated that a WD repeat containing protein ORC-associated (ORCA/LRWD1) stabilizes the ORC on chromatin and facilitates pre-RC assembly. Further, ORCA levels are cell cycle-regulated, with highest levels during G1, and progressively decreasing during S phase, but the mechanism remains to be elucidated. We now demonstrate that ORCA is polyubiquitinated in vivo, with elevated ubiquitination observed at the G1/S boundary. ORCA utilizes lysine-48 (K48) ubiquitin linkage, suggesting that ORCA ubiquitination mediates its regulated degradation. Ubiquitinated ORCA is re-localized in the form of nuclear aggregates and is predominantly associated with chromatin. We demonstrate that ORCA associates with the E3 ubiquitin ligase Cul4A-Ddb1. ORCA is ubiquitinated at the WD40 repeat domain, a region that is also recognized by Orc2. Furthermore, Orc2 associates only with the non-ubiquitinated form of ORCA, and Orc2 depletion results in the proteasome-mediated destabilization of ORCA. Based on the results, we suggest that Orc2 protects ORCA from ubiquitin-mediated degradation in vivo.  相似文献   

11.
Origin recognition complex (ORC) is highly dynamic, with several ORC subunits getting posttranslationally modified by phosphorylation or ubiquitination in a cell cycle-dependent manner. We have previously demonstrated that a WD repeat containing protein ORC-associated (ORCA/LRWD1) stabilizes the ORC on chromatin and facilitates pre-RC assembly. Further, ORCA levels are cell cycle-regulated, with highest levels during G1, and progressively decreasing during S phase, but the mechanism remains to be elucidated. We now demonstrate that ORCA is polyubiquitinated in vivo, with elevated ubiquitination observed at the G1/S boundary. ORCA utilizes lysine-48 (K48) ubiquitin linkage, suggesting that ORCA ubiquitination mediates its regulated degradation. Ubiquitinated ORCA is re-localized in the form of nuclear aggregates and is predominantly associated with chromatin. We demonstrate that ORCA associates with the E3 ubiquitin ligase Cul4A-Ddb1. ORCA is ubiquitinated at the WD40 repeat domain, a region that is also recognized by Orc2. Furthermore, Orc2 associates only with the non-ubiquitinated form of ORCA, and Orc2 depletion results in the proteasome-mediated destabilization of ORCA. Based on the results, we suggest that Orc2 protects ORCA from ubiquitin-mediated degradation in vivo.  相似文献   

12.
13.
Aralkyl and aryl selenoglycosides as well as glycosyl selenocarboxylate derivatives were assayed on the activity of protein phosphatase-1 (PP1) and -2A (PP2A) catalytic subunits (PP1c and PP2Ac) in search of compounds for PP1c and PP2Ac effectors. The majority of tested selenoglycosides activated both PP1c and PP2Ac by ~2–4-fold in a phosphatase assay with phosphorylated myosin light chain substrate when the hydroxyl groups of the glycosyl moiety were acetylated, but they were without any effects in the non-acetylated forms. A peptide from the myosin phosphatase target subunit-1 (MYPT123–38) that included an RVxF PP1c-binding motif attenuated activation of PP1c by 2-Trifluoromethylbenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (TFM-BASG) and 4-Bromobenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (Br-BASG). MYPT123–38 stimulated PP2Ac and contributed to PP2Ac activation exerted by either Br-BASG or TFM-BASG. Br-BASG and TFM-BASG suppressed partially binding of PP1c to MYPT1 in surface plasmon resonance based binding experiments. Molecular docking predicted that the hydrophobic binding surfaces in PP1c for interaction with either the RVxF residues of PP1c-interactors or selenoglycosides are partially overlapped. Br-BASG and TFM-BASG caused a moderate increase in the phosphatase activity of HeLa cells in 1?h, and suppressed cell viability in 24?h incubations. In conclusion, our present study identified selenoglycosides as novel activators of PP1 and PP2A as well as provided insights into the structural background of their interactions establishing a molecular model for future design of more efficient phosphatase activator molecules.  相似文献   

14.
The origin recognition complex (ORC) in yeast is a complex of six tightly associated subunits essential for the initiation of DNA replication. Human ORC subunits are nuclear in proliferating cells and in proliferative tissues like the testis, consistent with a role of human ORC in DNA replication. Orc2, Orc3, and Orc5 also are detected in non-proliferating cells like cardiac myocytes, adrenal cortical cells, and neurons, suggesting an additional role of these proteins in non-proliferating cells. Although Orc2-5 co-immunoprecipitate with each other under mild extraction conditions, a holo complex of the subunits is difficult to detect. When extracted under more stringent extraction conditions, several of the subunits co-immunoprecipitate with stoichiometric amounts of other unidentified proteins but not with any of the known ORC subunits. The variation in abundance of individual ORC subunits (relative to each other) in several tissues, expression of some subunits in non-proliferating tissues, and the absence of a stoichiometric complex of all the subunits in cell extracts indicate that subunits of human ORC in somatic cells might have activities independent of their role as a six subunit complex involved in replication initiation. Finally, all ORC subunits remain consistently nuclear, and Orc2 is consistently phosphorylated through all stages of the cell cycle, whereas Orc1 is selectively phosphorylated in mitosis.  相似文献   

15.
PP2Cγ is a splicing factor that dephosphorylates specific substrates required for the formation of the spliceosome. In a previous study, we reported that the degradation of p21Cip1/WAF1was affected by PP2Cγ, causing an accumulation of cells in S phase. Here, we demonstrate that the PP2Cγ-induced degradation of p21Cip1/WAF1 is mediated by Akt signaling. In cells expressing PP2Cγ, Akt1 protein was phosphorylated. When PP2Cγ expression was knocked down, the phosphorylation of Akt1 was reduced and the level of p21Cip1/WAF1 protein was increased. Interestingly, the stability of p21Cip1/WAF1 was highly maintained in Akt1-depleted cells despite the ectopic expression of PP2Cγ. Taken together, these results suggest that PP2Cγ is a novel regulator of p21Cip1/WAF1 protein stability via the Akt signaling pathway.  相似文献   

16.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   

17.
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325–554 and R15B340–639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325–674 and R15B340–713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.  相似文献   

18.
The origin recognition complex (ORC) of eukaryotes associates with the replication origins and initiates the pre-replication complex assembly. In the literature, there are several reports of interaction of ORC with different RNAs. Here, we demonstrate for the first time a direct interaction of ORC with the THSC/TREX-2 mRNA nuclear export complex. The THSC/TREX-2 was purified from the Drosophila embryonic extract and found to bind with a fraction of the ORC. This interaction occurred via several subunits and was essential for Drosophila viability. Also, ORC was associated with mRNP, which was facilitated by TREX-2. ORC subunits interacted with the Nxf1 receptor mediating the bulk mRNA export. The knockdown of Orc5 led to a drop in the Nxf1 association with mRNP, while Orc3 knockdown increased the level of mRNP-bound Nxf1. The knockdown of Orc5, Orc3 and several other ORC subunits led to an accumulation of mRNA in the nucleus, suggesting that ORC participates in the regulation of the mRNP export.  相似文献   

19.
Origin recognition complex (ORC), a six-protein complex, is the most likely initiator of chromosomal DNA replication in eukaryotes. Throughout the cell cycle, ORC binds to chromatin at origins of DNA replication and functions as a 'landing pad' for the binding of other proteins, including Cdt1p, to form a prereplicative complex. In this study, we used yeast two-hybrid analysis to examine the interaction between Cdt1p and every ORC subunit. We observed potent interaction with Orc6p, and weaker interaction with Orc2p and Orc5p. Coimmunoprecipitation assay confirmed that Cdt1p interacted with Orc6p, as well as with Orc1p and Orc2p. We mapped the C-terminal region, and a middle region of Orc6p (amino acids residues 394-435, and 121-175, respectively), as important for interaction with Cdt1p. Cdt1p was purified to examine its direct interaction with ORC, and its effect on the activity of ORC. Glutathione-S-transferase pull-down analysis revealed that Cdt1p binds directly to ORC. Cdt1p neither bound to origin DNA and ATP nor affected ORC-binding to origin DNA and ATP. These results suggest that interaction of Cdt1p with ORC is involved in the formation of the prereplicative complex, rather than in regulation of the activity of ORC.  相似文献   

20.
Most eukaryotic cell types can withdraw from proliferative cell cycles and remain quiescent for extended periods. Intact nuclei isolated from quiescent murine NIH3T3 cells fail to replicate in vitro when incubated in Xenopus egg extracts, although intact nuclei from proliferating cells replicate well. Permeabilization of the nuclear envelope rescues the ability of quiescent nuclei to replicate in the extract. We show that origin replication complex (ORC), minichromosome maintenance (MCM), and Cdc6 proteins are all present in early quiescent cells. Immunodepletion of Cdc6 or the MCM complex from Xenopus egg extract inhibits replication of permeable, quiescent, but not proliferating, NIH3T3 nuclei. Immunoblotting results demonstrate that mouse homologues of Mcm2, Mcm5, and Cdc6 are displaced from chromatin in quiescent cells. However, this absence of chromatin-bound Cdc6 and MCM proteins from quiescent cells appears not to be due to the absence of ORC subunits as murine homologues of Orc1 and Orc2 remain chromatin-bound in quiescent cells. Surprisingly, intact quiescent nuclei fail to bind exogenously added XCdc6 or to replicate in Xenopus egg extracts immunodepleted of ORC, even though G1- or S-phase nuclei still replicate in these extracts. Our results identify Cdc6 and the MCM complex as essential replication components absent from quiescent chromatin due to nonfunctional chromatin-bound ORC proteins. These results can explain why quiescent mammalian nuclei are unable to replicate in vivo and in Xenopus egg extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号