首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The hyaluronidase Hyal‐1 is an acid hydrolase that degrades hyaluronic acid (HA), a component of the extracellular matrix. It is often designated as a lysosomal protein. Yet few data are available on its intracellular localization and trafficking. We demonstrate here that in RAW264.7 murine macrophages, Hyal‐1 is synthesized as a glycosylated precursor that is only weakly mannose 6‐phosphorylated. Nevertheless, this precursor traffics to endosomes, via a mannose 6‐phosphate‐independent secretion/recapture mechanism that involves the mannose receptor. Once in endosomes, it is processed into a lower molecular mass form that is transported to lysosomes, where its activity could be detected using native gel zymography. Indeed, this activity co‐distributed with lysosomal hydrolases in the densest fraction of a self‐forming PercollTM density gradient. Moreover, it shifted toward the lower density region, in parallel with those hydrolases, when a decrease of lysosomal density was induced by the endocytosis of sucrose. Interestingly, the activity of the processed form of Hyal‐1 was largely underestimated when assayed by zymography after SDS‐PAGE and subsequent renaturation of the proteins, by contrast to the full‐length protein that could efficiently degrade HA in those conditions. These results suggest that noncovalent associations support the lysosomal activity of Hyal‐1.   相似文献   

2.
Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan involved in a wide variety of cellular functions. However, its turnover in living cells remains largely unknown. In this study, CD44, a receptor for HA, and hyaluronidase-1, -2, and -3 (Hyal-1, -2 and -3) were stably expressed in HEK 293 cells and the mechanism of HA catabolism was systematically investigated using fluorescein-labeled HA. CD44 was essential for HA degradation by both endogenous and exogenously expressed hyaluronidases. Hyal-1 was not able to cleave HA in living cells in the absence of CD44. Intracellular HA degradation was predominantly mediated by Hyal-1 after incorporation of HA by CD44. Although Hyal-1 was active only in intracellular space in vivo, a certain amount of the enzyme was secreted to extracellular space. This extracellular Hyal-1 was found to be incorporated by cells and such uptake of Hyal-1 was, in part, involved in the intracellular degradation of HA. Hyal-2 was involved in the extracellular degradation of HA. Hyal-2 activity was also dependent on the expression of CD44 in both living cells and enzyme assays. Immunofluorescent microscopy demonstrated that both Hyal-2 and CD44 are present on the cell surface. Without CD44 expression, Hyal-2 existed in a granular pattern, and did not show hyaluronidase activity, suggesting that localization change could contribute to Hyal-2 function. A convenient and quantitative enzyme assay was established for the measurement of Hyal-2 activity. Hyal-2 activity was detected in the membrane fraction of cells co-expressing Hyal-2 and CD44. The pH optimum for Hyal-2 was 6.0-7.0. The membrane fraction of cells expressing Hyal-2 alone did not show hyaluronidase activity. Hyal-3 did not show any hyaluronidase activity in our experimental conditions. Based on these findings, Hyal-1 and -2 contribute to intracellular and extracellular catabolism of HA, respectively, in a CD44-dependent manner, and their HA degradation occurs independently from one another.  相似文献   

3.
4.
Hyaluronidase expression in human skin fibroblasts   总被引:2,自引:0,他引:2  
Hyaluronidase activity has been detected for the first time in normal human dermal fibroblasts (HS27), as well as in fetal fibroblasts (FF24) and fibrosarcoma cells (HT1080). Enzymatic activity was secreted predominantly into the culture media, with minor amounts of activity associated with the cell layer. In both classes of fibroblasts, hyaluronidase expression was confluence-dependent, with highest levels of activity occurring in quiescent, post-confluent cells. However, in the fibrosarcoma cell cultures, expression was independent of cell density. The enzyme had a pH optimum of 3.7 and on hyaluronan substrate gel zymography, activity occurred as a single band corresponding to an approximate molecular size of 57 kDa. The enzyme could be immunoprecipitated in its entirety using monoclonal antibodies raised against Hyal-1, human plasma hyaluronidase. PCR confirmed that fibroblast hyaluronidase was identical to Hyal-1. The conclusion by previous investigators using earlier technologies that fibroblasts do not contain hyaluronidase activity should be reevaluated.  相似文献   

5.
The availability of recombinant expression systems for the production of purified human hyaluronidases PH-20 and Hyal-1 facilitated the first detailed analysis of the enzymatic reaction products. The human recombinant enzymes, both expressed by Drosophila Schneider-2 (DS-2) cells, were compared to bovine testicular hyaluronidase (BTH), a commercially available hyaluronidase preparation, which has long been considered a prototype of mammalian hyaluronidases. The conversion of low molecular weight hyaluronic acid (HA) fragments was detected by a capillary zone electrophoresis (CZE) method. Surprisingly, the HA hexasaccharide, which is generally accepted to be the minimum substrate of BTH, was not a substrate of recombinant human PH-20 and Hyal-1. However, HA octasaccharide was converted efficiently by both enzymes, thus representing the minimum substrate for human PH-20 and Hyal-1. Additionally, BTH was shown to catabolize the HA hexasaccharide at pH 4.0 mainly by hydrolysis, while at pH 6.0 transglycosylation prevailed. Human PH-20 was found to catalyze both hydrolysis and transglycosylation of the HA octasaccharide. On the contrary, human Hyal-1 converted the HA octasaccharide mainly by hydrolysis with transglycosylation products occurring only at high substrate concentrations (> or = 500 microM). The differences between the hyaluronidase subtypes and isoenzymes were much more prominent than expected. Obviously, the different hyaluronidase subtypes have evolved into very specialized enzymes with respect to their catalytic mechanism of action.  相似文献   

6.
Serum hyaluronidase aberrations in metabolic and morphogenetic disorders   总被引:1,自引:0,他引:1  
Hyaluronidases are endo-glycosidases that degrade both hyaluronan (hyaluronic acid) (HA) and chondroitin sulfates. Deficiency of hyaluronidase activity has been predicted to result in a phenotype similar to that observed in mucopolysaccharidosis (MPS). In the present study, we surveyed a variety of patients with phenotypes similar to those observed in MPS, but without significant mucopolysacchariduria to determine if some are based on aberrations in serum hyaluronidase (Hyal-1) activity. The study included patients with well-characterized dysmorphic disorders occurring on genetic basis, as well as those of unkown etiology. The purpose of the study was to establish how wide spread were abnormalities in levels of circulating Hyal-1 activity. A simple and sensitive semi-quantitative zymographic procedure was used for the determination of activity. Levels of both beta-N-acetylglucosaminidase and beta-glucuronidase whose activities contribute to the total breakdown of hyaluronan (HA) were also measured, as well as the concentration of circulating HA. Among 48 patients with bone or connective tissue abnormalities, low levels of Hyal-1 activity were found in six patients compared to levels in 100 healthy donors (2.0-3.2 units/microL vs 6(+/- 1 SE) units/microL). These six patients exhibited a wide spectrum of clinical abnormalities, in particular shortened extremities: they included three patients with unknown causes of clinical symptoms, one patient with Sanfilippo disease, one of the seven patients with achondroplasia, and one with hypophosphotemic rickets. Normal levels of serum Hyal-1 activities were found in patients with Morquio disease, GM1 gangliosidosis, I cell-disease, 6 of the 7 patients with achondroplasia, Marfan's-syndrome and Ehlers-Danlos syndrome. No patient totally lacked serum Hyal-1 activity. Serum HA concentration was elevated in patients with Sanfilippo A and I-cell disease. Determination of serum and leukocyte Hyal-1 and serum HA may be useful to evaluate patients with metabolic and morphogenetic disorders.  相似文献   

7.
The human hyaluronidase Hyal-1, one of six human hyaluronidase subtypes, preferentially degrades hyaluronic acid present in the extracellular matrix of somatic tissues. Modulations of Hyal-1 expression have been observed in a number of malignant tumors. However, its role in disease progression is discussed controversially due to limited information on enzyme properties as well as the lack of specific inhibitors. Therefore, we expressed human Hyal-1 in a prokaryotic and in an insect cell system to produce larger amounts of the purified enzyme. In Escherichia coli, Hyal-1 formed inclusion bodies and was refolded in vitro after purification by metal ion affinity chromatography. However, the enzyme was produced with extremely low folding yields (0.5%) and exhibited a low specific activity (0.1 U/mg). Alternatively, Hyal-1 was secreted into the medium of stably transfected Drosophila Schneider-2 (DS-2) cells. After several purification steps, highly pure enzyme with a specific activity of 8.6 U/mg (consistent with the reported activity of human Hyal-1 from plasma) was obtained. Both Hyal-1 enzymes showed pH profiles similar to the hyaluronidase of human plasma with an activity maximum at pH 3.5-4.0. Deglycosylation of Hyal-1, expressed in DS-2 cells, resulted in a decrease in the enzymatic activity determined by a colorimetric hyaluronidase activity assay. Purified Hyal-1 from DS-2 cells was used for the investigation of the inhibitory activity of new ascorbic acid derivatives. Within this series, l-ascorbic acid tridecanoate was identified as the most potent inhibitor with an IC(50) of 50 +/- 4 microM comparable with glycyrrhizic acid.  相似文献   

8.
Bovine testicular hyaluronidase (BTH) has been used as a spreading factor for many years and was primarily characterized by its enzymatic activity. As recombinant human hyaluronidases are now available the bovine preparations can be replaced by the human enzymes. However, data on the pH-dependent activity of hyaluronidases reported in literature are inconsistent in part or even contradictory. Detection of the pH-dependent activity of PH-20 type hyaluronidases, i.e. recombinant human PH-20 (rhPH-20) and BTH, showed a shift of the pH optimum from acidic pH values in a colorimetric activity assay to higher pH values in a turbidimetric activity assay. Contrarily, recombinant human Hyal-1 (rhHyal-1) and bee venom hyaluronidase (BVH) exhibited nearly identical pH profiles in both commonly used types of activity assays. Analysis of the hyaluronic acid (HA) degradation products by capillary zone electrophoresis showed that hyaluronan was catabolized by rhHyal-1 continuously into HA oligosaccharides. BTH and, to a less extent, rhPH-20 exhibited a different mode of action: at acidic pH (pH 4.5) HA was degraded as described for rhHyal-1, while at elevated pH (pH 5.5) small oligosaccharides were produced in addition to HA fragments of medium molecular weight, thus explaining the pH-dependent discrepancies in the activity assays. Our results suggest a sub-classification of mammalian-type hyaluronidases into a PH-20/BTH and a Hyal-1/BVH subtype. As the biological effects of HA fragments are reported to depend on the size of the molecules it can be speculated that different pH values at the site of hyaluronan degradation may result in different biological responses.  相似文献   

9.
Cathepsin L [EC 3.4.22.15] is secreted via lysosomal exocytosis by several types of cancer cells, including prostate and breast cancer cells. We previously reported that human cultured fibrosarcoma (HT 1080) cells secrete cathepsin L into the medium; this secreted cathepsin is 10-times more active than intracellular cathepsin. This increased activity was attributed to the presence of a 32-kDa cathepsin L in the medium. The aim of this study was to examine how this active 32-kDa cathepsin L is secreted into the medium. To this end, we compared the secreted active 32-kDa cathepsin L with lysosomal cathepsin L by using a novel gelatin zymography technique that employs leupeptin. We also examined the glycosylation and phosphorylation status of the proteins by using the enzymes endoglycosidase H [EC 3.2.1.96] and alkaline phosphatase [EC 3.1.3.1]. Strong active bands corresponding to the 32-kDa and 34-kDa cathepsin L forms were detected in the medium and lysosomes, respectively. The cell extract exhibited strong active bands for both forms. Moreover, both forms were adsorbed onto a concanavalin A-agarose column. The core protein domain of both forms had the same molecular mass of 30 kDa. The 32-kDa cathepsin L was phosphorylated, while the 34-kDa lysosomal form was dephosphorylated, perhaps because of the lysosomal marker enzyme, acid phosphatase. These results suggest that the active 32-kDa form does not enter the lysosomes. In conclusion, our results indicate that the active 32-kDa cathepsin L is secreted directly from the HT 1080 cells and not via lysosomal exocytosis.  相似文献   

10.
Using streptozotocin-induced diabetic Wistar and GK rats as models of type 1 and type 2 diabetes, respectively, we investigated the changes in serum and urinary hyaluronidase activity with the pathological progress. The serum hyaluronidase levels of streptozotocin-induced rats started to increase on the third day after injection and thereafter maintained approximately threefold higher levels compared with control rats; those of GK rats were already higher ( approximately twofold) from the beginning of the experiment. The increases of serum hyaluronidase activity in both diabetic rats were similar to those of blood glucose level, indicating that diabetes mellitus was accompanied by enhanced activity of circulating hyaluronidase from the early phase of its development. In zymography, every serum from diabetic and control rats gave two hyaluronidase isomers, a major 73-kDa band (Hyal-1 type) and a minor 132-kDa band, suggesting that the increases in serum hyaluronidase activity were not due to the appearance of novel isomers. The hyaluronidase activity in 24-h urine of streptozotocin-induced rats was 3-, 7-, and 11-fold higher at the 8th, 15th, and 18th week than that of control rats, respectively, and the urinary hyaluronidase activity of GK rats was not significantly different from controls. There was a good correlation between the urinary hyaluronidase activity and the albumin excretion. Thus the increase in urinary hyaluronidase activity may reflect enhanced glomerular permeability in streptozotocin-induced diabetic rats and may be a useful marker for diabetic nephropathy. Relative resistance to SDS-denaturation in zymography of rat serum and urinary hyaluronidases compared with human serum hyaluronidase are also shown.  相似文献   

11.

Background  

Functional antagonism between transforming growth factor beta (TGF-β) and hyaluronidase has been demonstrated. For example, testicular hyaluronidase PH-20 counteracts TGF-β1-mediated growth inhibition of epithelial cells. PH-20 sensitizes various cancer cells to tumor necrosis factor (TNF) cytotoxicity by upregulating proapoptotic p53 and WW domain-containing oxidoreductase (WOX1). TGF-β1 blocks PH-20-increased TNF cytotoxicity. In the present study, the functional antagonism between TGF-β1 and lysosomal hyaluronidases Hyal-1 and Hyal-2 was examined.  相似文献   

12.
Heparin was degraded to oligosaccharides by an endoglycosidase present in rat liver lysosomes. Inorganic sulfate equivalent to approximately one sulfamide bond cleaved per heparin chain was also released in incubations of N-[35S]heparin with crude lysosomal preparations. There was no evidence of exoglycosidase or further sulfamidase activity although oligosaccharides approaching the size of tetrasaccharide were produced. The endoglycosidase has a broad pH-dependence with optimum activity observed at pH 4.4 and intermediate activity at pH 5.5 and 3.8.  相似文献   

13.
Some properties of the multiple forms of human hyaluronidases in somatic tissues and in body fluids were investigated. Liver and placenta exhibited seven hyaluronidase forms when analyzed electrophoretically on a polyacrylamide-hyaluronan gel. Ovary, breast, myometrium, endometrium, skin, leukocytes and platelets displayed distinct patterns of enzymatic micropolydispersity. The most acidic forms of hyaluronidase were in synovial fluid and serum, some serum exhibited an additional basic form. Following sialidase treatment, the number of forms decreased to two in placenta, three in liver and to a broad basic form in serum. The native serum and placental hyaluronidases remained fully active after thermal inactivation but desialylated hyaluronidase was inactivated slowly in serum, and quickly in placenta suggesting a higher overall glycosylation of the plasma enzyme. Potential N-glycosylation sites were searched in the amino acid sequences of six human hyaluronidases and several hyaluronidases from different mammalian species using the PROSITE motif database. A potential N-glycosylation site (site 1) with similar tripeptide patterns was observed at the same position in human plasma (HYAL1), human lysosomes (HYAL2) and in two newly reported hyaluronidases (HYAL4 and HYALP1). The same site was also present in mouse plasma (HYAL1) and mouse lysosomes (HYAL2), and in rat lysosomes (HYAL2). This site was absent in human HYAL3 and in all sperm hyaluronidases (PH-20) studied (human, macaque, mouse, guinea pig, rabbit and fox). A second potential N-glycosylation site was observed at a location further in the polypeptide chain. This site is present in all mammalian hyaluronidase isoenzymes reported in the present study whatever the species and organ localization. The pattern at site 2 is NVT for all hyaluronidases except for hyaluronidases of lysosomal origin where it is NVS. Such conserved sites strongly suggest that they may represent actual N-glycosylation sites.  相似文献   

14.
Unlike lysosomal soluble proteins, few lysosomal membrane proteins have been identified. Rat liver lysosomes were purified by centrifugation on a Nycodenz density gradient. The most hydrophobic proteins were extracted from the lysosome membrane preparation and were identified by MS. We focused our attention on a protein of approx. 40 kDa, p40, which contains seven to ten putative transmembrane domains and four lysosomal consensus sorting motifs in its sequence. Knowing that preparations of lysosomes obtained by centrifugation always contain contaminant membranes, we combined biochemical and morphological methods to analyse the subcellular localization of p40. The results of subcellular fractionation of mouse liver homogenates validate the lysosomal residence of p40. In particular, a density shift of lysosomes induced by Triton WR-1339 similarly affected the distributions of p40 and beta-galactosidase, a lysosomal marker protein. We confirmed by fluorescence microscopy on eukaryotic cells transfected with p40 or p40-GFP (green fluorescent protein) constructs that p40 is localized in lysosomes. A first molecular characterization of p40 in transfected Cos-7 cells revealed that it is an unglycosylated protein tightly associated with membranes. Taken together, our results strongly support the hypothesis that p40 is an authentic lysosomal membrane protein.  相似文献   

15.
The six hyaluronidase-like genes in the human and mouse genomes.   总被引:19,自引:0,他引:19  
The human genome contains six hyaluronidase-like genes. Three genes (HYAL1, HYAL2 and HYAL3) are clustered on chromosome 3p21.3, and another two genes (HYAL4 and PH-20/SPAM1) and one expressed pseudogene (HYALP1) are similarly clustered on chromosome 7q31.3. The extensive homology between the different hyaluronidase genes suggests ancient gene duplication, followed by en masse block duplication, events that occurred before the emergence of modern mammals. Very recently we have found that the mouse genome also has six hyaluronidase-like genes that are also grouped into two clusters of three, in regions syntenic with the human genome. Surprisingly, the mouse ortholog of HYALP1 does not contain any mutations, and unlike its human counterpart may actually encode an active enzyme. Hyal-1 is the only hyaluronidase in mammalian plasma and urine, and is also found at high levels in major organs such as liver, kidney, spleen, and heart. A model is proposed suggesting that Hyal-2 and Hyal-1 are the major mammalian hyaluronidases in somatic tissues, and that they act in concert to degrade high molecular weight hyaluronan to the tetrasaccharide. Twenty-kDa hyaluronan fragments are generated at the cell surface in unique endocytic vesicles resulting from digestion by the glycosylphosphatidyl-inositol-anchored Hyal-2, transported intracellularly by an unknown process, and then further digested by Hyal-1. The two beta-exoglycosidases, beta-glucuronidase and beta-N-acetyl glucosaminidase, remove sugars from reducing termini of hyaluronan oligomers, and supplement the hyaluronidases in the catabolism of hyaluronan.  相似文献   

16.
Hyaluronidase activity in lysosomes of bone tissue   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The distribution pattern of hyaluronidase in subcellular fractions of bone-tissue homogenates is closely similar to that reported by Vaes & Jacques (1965b) for the other acid hydrolases of this tissue. The highest specific activity of hyaluronidase is also found in the light-mitochondrial fraction. 2. In cytoplasmic extracts of bone, about 60% of the activity of hyaluronidase is latent, and is unmasked by a number of treatments (digitonin, low osmotic pressure, freezing and thawing, Waring Blendor) that unmask the lysosomal β-glucuronidase in a closely parallel manner. Low concentrations of Triton X-100 render a larger proportion of β-glucuronidase than of hyaluronidase accessible to external substrates, but release the same proportion of both enzymes in unsedimentable form. 3. These results support the concept of an association of hyaluronidase with lysosomes in bone.  相似文献   

17.
We have explored CD44 (a hyaluronan (HA) receptor) interaction with a Na(+)-H(+) exchanger (NHE1) and hyaluronidase-2 (Hyal-2) during HA-induced cellular signaling in human breast tumor cells (MDA-MB-231 cell line). Immunological analyses demonstrate that CD44s (standard form) and two signaling molecules (NHE1 and Hyal-2) are closely associated in a complex in MDA-MB-231 cells. These three proteins are also significantly enriched in cholesterol and ganglioside-containing lipid rafts, characterized as caveolin and flotillin-rich plasma membrane microdomains. The binding of HA to CD44 activates Na(+)-H(+) exchange activity which, in turn, promotes intracellular acidification and creates an acidic extracellular matrix environment. This leads to Hyal-2-mediated HA catabolism, HA modification, and cysteine proteinase (cathepsin B) activation resulting in breast tumor cell invasion. In addition, we have observed the following: (i) HA/CD44-activated Rho kinase (ROK) mediates NHE1 phosphorylation and activity, and (ii) inhibition of ROK or NHE1 activity (by treating cells with a ROK inhibitor, Y27632, or NHE1 blocker, S-(N-ethyl-N-isopropyl) amiloride, respectively) blocks NHE1 phosphorylation/Na(+)-H(+) exchange activity, reduces intracellular acidification, eliminates the acidic environment in the extracellular matrix, and suppresses breast tumor-specific behaviors (e.g. Hyal-2-mediated HA modification, cathepsin B activation, and tumor cell invasion). Finally, down-regulation of CD44 or Hyal-2 expression (by treating cells with CD44 or Hyal-2-specific small interfering RNAs) not only inhibits HA-mediated CD44 signaling (e.g. ROK-mediated Na(+)-H(+) exchanger reaction and cellular pH changes) but also impairs oncogenic events (e.g. Hyal-2 activity, hyaluronan modification, cathepsin B activation, and tumor cell invasion). Taken together, our results suggest that CD44 interaction with a ROK-activated NHE1 (a Na(+)-H(+) exchanger) in cholesterol/ganglioside-containing lipid rafts plays a pivotal role in promoting intracellular/extracellular acidification required for Hyal-2 and cysteine proteinase-mediated matrix degradation and breast cancer progression.  相似文献   

18.
Aldolase was purified from rabbit liver by affinity-elution chromatography. By taking precautions to avoid rupture of lysosomes during the isolation procedure, a stable form of liver aldolase was obtained. The stable form of the enzyme had a specific activity with respect to fructose 1,6-bisphosphate cleavage of 20-28 mumol/min per mg of protein and a fructose 1,6-bisphosphate cleavage of 20-28mumol/min per mg of protein and a frutose 1,6-bisphosphate/fructose 1-phosphate activity ratio of 4. It was distinguishable from rabbit muscle aldolase, as previously isolated, on the basis of its electrophoretic mobility and N-terminal analysis. Muscle and liver aldolases were immunologically distinct. The stable liver aldolase was degraded with a lysosomal extract to a form with catalytic properties resembling those reported for aldolase B4. It is postulated that liver aldolase prepared by previously described methods has been modified by proteolysis and does not constitute the native form of the enzyme.  相似文献   

19.
The sucrose binding protein (SBP) belongs to the cupin family of proteins and is structurally related to vicilin-like storage proteins. In this investigation, a SBP isoform (GmSBP2/S64) was expressed in E. coli and large amounts of the protein accumulated in the insoluble fraction as inclusion bodies. The renatured protein was studied by circular dichroism (CD), intrinsic fluorescence, and binding of the hydrophobic probes ANS and Bis-ANS. The estimated content of secondary structure of the renatured protein was consistent with that obtained by theoretical modeling with a large predominance of beta-strand structure (42%) over the alpha-helix (9.9%). The fluorescence emission maximum of 303 nm for SBP2 indicated that the fluorescent tryptophan was completely buried within a highly hydrophobic environment. We also measured the equilibrium dissociation constant (K(d)) of sucrose binding by fluorescence titration using the refolded protein. The low sucrose binding affinity (K(d)=2.79+/-0.22 mM) of the renatured protein was similar to that of the native protein purified from soybean seeds. Collectively, these results indicate that the folded structure of the renatured protein was similar to the native SBP protein. As a member of the bicupin family of proteins, which includes highly stable seed storage proteins, SBP2 was fairly stable at high temperatures. Likewise, it remained folded to a similar extent in the presence or absence of 7.6M urea or 6.7 M GdmHCl. The high stability of the renatured protein may be a reminiscent property of SBP from its evolutionary relatedness to the seed storage proteins.  相似文献   

20.
The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central β-sheet is twisted ~ 10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins—known as the “rigor-like” state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号