首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NRP1 as multifunctional non-tyrosine-kinase receptors play critical roles in tumor progression. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, particularly cancer. It remains unclear whether miRNAs can regulate the expression of NRP1. The goal of this study was to identify miRNAs that could inhibit the growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. We found that miR-338 expression was reduced in gastric cancer cell lines and in gastric cancer tissues. Moreover, we found that miR-338 inhibited gastric cancer cell migration, invasion, proliferation and promoted apoptosis by targeting NRP1 expression. As an upstream regulator of NRP1, miR-338 directly targets NRP1. The forced expression of miR-338 inhibited the phosphorylation of Erk1/2, P38 MAPK and Akt; however, the expression of phosphorylated Erk1/2, P38 MAPK and Akt was restored by the overexpression of NRP1. In AGS cells infected with miR-338 or transfected with SiNRP1, the protein levels of fibronectin, vimentin, N-cadherin and SNAIL were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-338-expressing cells was restored to normal levels by the restoration of NRP1 expression. In vivo, miR-338 also decreased tumor growth and suppressed D-MVA by targeting NRP1. Therefore, we conclude that miR-338 acts as a novel tumor suppressor gene in gastric cancer. miR-338 can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as gastric cancer EMT, by attenuating the expression of NRP1.  相似文献   

2.
3.
MicroRNAs (miRNAs) are a group endogenous small non-coding RNAs that inhibit protein translation through binding to specific target mRNAs. Recent studies have demonstrated that miRNAs are implicated in the development of cancer. However, the role of miR-144 in uveal melanoma metastasis remains largely unknown. MiR-144 was downregulated in both uveal melanoma cells and tissues. Transfection of miR-144 mimic into uveal melanoma cells led to a decrease in cell growth and invasion. After identification of two putative miR-144 binding sites within the 3'' UTR of the human c-Met mRNA, miR-144 was proved to inhibit the luciferase activity inMUM-2B cells with a luciferase reporter construct containing the binding sites. In addition, the expression of c-Met protein was inhibited by miR-144. Furthermore, c-Met-mediated cell proliferation and invasion were inhibited by restoration of miR-144 in uveal melanoma cells. In conclusion, miR-144 acts as a tumor suppressor in uveal melanoma, through inhibiting cell proliferation and migration. miR-144 might serve as a potential therapeutic target in uveal melanoma patients.  相似文献   

4.
MicroRNAs (miRNAs/miRs) have aroused increasing attention in colorectal cancer (CRC) therapy. This study is designed for a detailed analysis of the roles of miR-16-5p and forkhead box K1 (FOXK1) in cell angiogenesis and proliferation during CRC in addition to their underlying mechanisms. CRC tissues and colon cancer cell lines (SW620 and HCT8) were investigated. qRT-PCR and Western blot were utilized to evaluate miR-16-5p and FOXK1 expression. Following gain- and loss-of-function assays on miR-16-5p or FOXK1, the effects of miR-16-5p and FOXK1 were assessed on cell angiogenesis and proliferation in CRC cells. A dual-luciferase reporter assay was employed to evaluate the binding relationship of miR-16-5p and FOXK1. Western blot was used to determine the effects of miR-16-5p and FOXK1 on key molecules of the PI3K/Akt/mTOR pathway. Highly expressed FOXK1 and lowly expressed miR-16-5p were observed in CRC cells and tissues. miR-16-5p overexpression or FOXK1 knockdown reduced CRC cell proliferation and angiogenesis of human umbilical vein endothelial cells co-cultured with the supernatant of CRC cells, whereas miR-16-5p silencing or FOXK1 upregulation caused opposite trends. Additionally, miR-16-5p negatively modulated FOXK1 expression. The blockade of the PI3K/Akt/mTOR pathway was triggered by miR-16-5p overexpression or FOXK1 silencing. In conclusion, miR-16-5p hampers cell angiogenesis and proliferation during CRC by targeting FOXK1 to block the PI3K/Akt/mTOR pathway.Key words: microRNA-16-5p, forkhead box K1, PI3K/Akt/mTOR pathway, colorectal cancer, proliferation, angiogenesis  相似文献   

5.
MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster targets CCND1 (encoding cyclin D1) and WNT3A, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that miR-15a and miR-16 act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.  相似文献   

6.
MicroRNAs (miRNAs) have recently emerged as regulators of metastasis. We provide insight into the behavior of miR-221 in colorectal cancer (CRC) metastasis by showing that miR-221 is significantly upregulated in metastatic CRC cell lines and tissues. miR-221 overexpression enhances, whereas miR-221 depletion reduces CRC cell migration and invasion in vitro and metastasis in vivo. We identify RECK as a direct target of miR-221, reveal its expression to be inversely correlated with miR-221 in CRC samples and show that its re-introduction reverses miR-221-induced CRC invasiveness. Collectively, miR-221 is an oncogenic miRNA which may regulate CRC migration and invasion through targeting RECK.  相似文献   

7.
B Feng  TT Dong  LL Wang  HM Zhou  HC Zhao  F Dong  MH Zheng 《PloS one》2012,7(8):e43452
MicroRNAs have been implicated in the regulation of several cellular signaling pathways of colorectal cancer (CRC) cells. Although emerging evidence proves that microRNA (miR)-106a is expressed highly in primary tumor and stool samples of CRC patients; whether or not miR-106a mediates cancer metastasis is unknown. We show here that miR-106a is highly expressed in metastatic CRC cells, and regulates cancer cell migration and invasion positively in vitro and in vivo. These phenotypes do not involve confounding influences on cancer cell proliferation. MiR-106a inhibits the expression of transforming growth factor-β receptor 2 (TGFBR2), leading to increased CRC cell migration and invasion. Importantly, miR-106a expression levels in primary CRCs are correlated with clinical cancer progression. These observations indicate that miR-106a inhibits the anti-metastatic target directly and results in CRC cell migration and invasion.  相似文献   

8.
One of the challenges in the treatment of colorectal cancer patients is that these tumors show resistance to radiation. MicroRNAs (miRNAs) are involved in essential biological activities, including chemoresistance and radioresistance. Several research studies have indicated that miRNA played an important role in sensitizing cellular response to ionizing radiation (IR). In this study, we found that miR-124 was significantly down-regulated both in CRC-derived cell lines and clinical CRC samples compared with adjacent non-tumor colorectal tissues, MiR-124 could sensitize human colorectal cancer cells to IR in vitro and in vivo. We identified PRRX1, a new EMT inducer and stemness regulator as a novel direct target of miR-124 by using target prediction algorithms and luciferase assay. PRRX1 knockdown could sensitize CRC cells to IR similar to the effects caused by miR-124. Overexpression of PRRX1 in stably overexpressed-miR-124 cell lines could rescue the effects of radiosensitivity enhancement brought by miR-124. Taking these observations into consideration, we illustrated that miR-124 could increase the radiosensitivity of CRC cells by blocking the expression of PRRX1, which indicated miR-124 could act as a great therapeutic target for CRC patients.  相似文献   

9.
10.
11.
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.  相似文献   

12.
MicroRNAs play critical roles in the development and progression of colorectal cancer (CRC). miR-154 acts as a tumor suppressor in several tumors; however, its role in CRC is poorly understood. Herein, we found that miR-154 was decreased in CRC tissues and cell lines. Ectopic expression of miR-154 remarkably suppressed cell proliferation and colony formation, migration and invasion in CRC cells. The toll-like receptor 2 (TLR2) was found to be a direct target of miR-154 in CRC cells. Inhibition of TLR2 performed similar effects with miR-154 overexpression on CRC cells, and overexpression of TLR2 could significantly reverse the tumor suppressive effects of miR-154 on CRC cells. This study suggests an essential role for miR-154 in CRC.  相似文献   

13.
14.
MicroRNAs (miRNAs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRNAs may function as oncogenes or tumor suppressors. Here we showed that miR-107 directly targeted MCL1 and activated ATR/Chk1 pathway to inhibit proliferation, migration and invasiveness of cervical cancer cells. Moreover, we found that MCL1 was frequently up-regulated in cervical cancer, and knockdown of MCL1 markedly inhibited cancer cell proliferation, migration and invasion, whereas ectopic expression of MCL1 significantly enhances these properties. The restoration of MCL1 expression can counteract the effect of miR-107 on the cancer cells. Together, miR-107 is a new regulator of MCL1, and both miR-107 and MCL1 play important roles in the pathogenesis of cervical cancer. We have therefore identified a mechanism for ATR/Chk1 pathway which involves an increase in miR-107 leading to a decrease in MCL1. Correspondingly, our results revealed that miR-107 affected ATR/Chk1 signalling and gene expression, and implicated miR-107 as a therapeutic target in human cervical cancer. We also demonstrated that taxol attenuated migration and invasion in cervical cancer cells by activating the miR-107, in which miR-107 play an important role in regulating the expression of MCL1. Elucidation of this discovered MCL1 was directly regulated by miR-107 will greatly enhance our understanding of the mechanisms responsible for cervical cancer and will provide an additional arm for the development of anticancer therapies.  相似文献   

15.
MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.  相似文献   

16.
BackgroundRBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC.MethodsThe expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity.ResultsOur results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice.ConclusionRBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.  相似文献   

17.
18.
microRNAs (miRNAs) are noncoding RNAs that regulates the expression of target messenger RNAs (mRNAs). c-FLIP is an inhibitor of cell apoptosis through inhibition of caspase 8. miR-150, miR-504, and miR-519d were related to cancer cell proliferation, invasion, and migration in colorectal cancer (CRC). However, the role of miR-150-504-519d in CRC has not been studied and the relationship between miR-150-504-519d and c-FLIP remains unclear. In this study, we found that c-FLIP was upregulated in CRC tissues, without detectable expression in normal CRC tissues. Using SW48 cell line, we further showed that miR-150-504-519d inhibited migration, invasion, and promoted apoptosis of SW48 cells. Moreover, in SW48 cell line transfected with miR-150-504-519d, the protein expression of c-FLIP was significantly lower compared with cells transfected with scramble. Our results demonstrated upregulation of c-FLIP in CRC, which was downregulated in SW48 cells after the transfection of miR-150-504-519d, suggesting that manipulation of miR-150-504-519d expression might be a novel approach for the treatment of colorectal cancer.  相似文献   

19.
MicroRNAs (miRNAs) have a profound impact on cell processes, including proliferation, apoptosis, and stress responses. We aimed to explore the role of antisense oligonucleotide (ASO) to induce proliferation or apoptosis of A549 cancer cells by inhibiting the expression of miRNAs. After A549/HBE/293T cells were treated with ASO, cells proliferation/apoptosis, and their relevant oncogenes/tumor suppressor genes were detected by light and electron microscopy, real-time PCR, enzyme-linked immunosorbent assay, etc. The results showed that ASO could inhibit the expression of miRNAs effectively. miR-16, miR-17, miR-34a–c, and miR-125 served as tumor suppressor miRNAs, while miR-20, miR-106, and miR-150 acted as oncogenic miRNAs. Our results also indicated that miR-16/34a–c, miR-17-5p, miR-125, miR-106, and miR-150 were the upstream factors, which could regulate the expression of BCL-2, E2F1, E2F3, RB1, and P53, respectively. After A549 cells treated with ASO for 24 h and different concentrations of anti-cancer drug (cisplatin or demethylcantharidin) were added into culture medium, the results indicated the percentage of alive cells in group treated with both ASO-106 (or ASO-150) and anti-cancer drug was lower than that in group treated with ASO, or anti-cancer drug, or both ASO-16 (or ASO-34a) and anti-cancer drug. In conclusion, ASO (specific to oncogenic miRNAs) could induce A549 cells apoptosis by inhibiting oncogenic miRNAs, and could increase chemotherapy sensitivity of A549 cells to anti-cancer drug, which holds great promise to lung cancer therapy.  相似文献   

20.
An abnormal acyl-CoA synthetase/stearoyl-CoA desaturase (ACSL/SCD) lipid network fuels colon cancer progression, endowing cells with invasive and migratory properties. Therapies against this metabolic network may be useful to improve clinical outcomes. Because micro-RNAs (miRNAs/miRs) are important epigenetic regulators, we investigated novel miRNAs targeting this pro-tumorigenic axis; hence to be used as therapeutic or prognostic miRNAs. Thirty-one putative common miRNAs were predicted to simultaneously target the three enzymes comprising the ACSL/SCD network. Target validation by quantitative RT-PCR, Western blotting, and luciferase assays showed miR-544a, miR-142, and miR-19b-1 as major regulators of the metabolic axis, ACSL/SCD. Importantly, lower miR-19b-1 expression was associated with a decreased survival rate in colorectal cancer (CRC) patients, accordingly with ACSL/SCD involvement in patient relapse. Finally, miR-19b-1 regulated the pro-tumorigenic axis, ACSL/SCD, being able to inhibit invasion in colon cancer cells. Because its expression correlated with an increased survival rate in CRC patients, we propose miR-19b-1 as a potential noninvasive biomarker of disease-free survival and a promising therapeutic miRNA in CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号