首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid nanoparticles (LNP) modified with cell-penetrating peptides (CPP) were prepared for the delivery of small interfering RNA (siRNA) into cells. Lipid derivatives of CPP derived from protamine were newly synthesized and used to prepare CPP-decorated LNP (CPP-LNP). Encapsulation of siRNA into CPP-LNP improved the stability of the siRNA in serum. Fluorescence-labeled siRNA formulated in CPP-LNP was efficiently internalized into B16F10 murine melanoma cells in a time-dependent manner, although that in LNP without CPP was hardly internalized into these cells. In cells transfected with siRNA in CPP-LNP, most of the siRNA was distributed in the cytoplasm of these cells and did not localize in the lysosomes. Analysis of the endocytotic pathway indicated that CPP-LNP were mainly internalized via macropinocytosis and heparan sulfate-mediated endocytosis. CPP-LNP encapsulating siRNA effectively induced RNA interference-mediated silencing of reporter genes in B16F10 cells expressing luciferase and in HT1080 human fibrosarcoma cells expressing enhanced green fluorescent protein. These data suggest that modification of LNP with the protamine-derived CPP was effective to facilitate internalization of siRNA in the cytoplasm and thereby to enhance gene silencing.  相似文献   

2.
Pang Y  Thomas P 《Steroids》2011,76(9):921-928
The functional characteristics of membrane progesterone receptors (mPRs) have been investigated using recombinant mPR proteins over-expressed in MDA-MB-231 breast cancer cells. Although these cells do not express the full-length progesterone receptor (PR), it is not known whether they express N-terminally truncated PR isoforms which could possibly account for some progesterone receptor functions attributed to mPRs. In the present study, the presence of N-terminally truncated PR isoforms was investigated in untransfected and mPR-transfected MDA-MB-231 cells, and in MDA-MB-468 breast cancer cells. PCR products were detected in PR-positive T47D Yb breast cancer cells using two sets of C-terminus PR primers, but not in untransfected and mPR-transfected MDA-MB-231 cells, nor in MDA-MB-468 cells. Western blot analysis using a C-terminal PR antibody, 2C11F1, showed the same distribution pattern for PR in these cell lines. Another C-terminal PR antibody, C-19, detected immunoreactive bands in all the cell lines, but also recognized α-actinin, indicating that the antibody is not specific for PR. High affinity progesterone receptor binding was identified on plasma membranes of MDA-MB-468 cells which was significantly decreased after treatment with siRNAs for mPRα and mPRβ. Plasma membranes of MDA-MB-468 cells showed very low binding affinity for the PR agonist, R5020, ≤1% that of progesterone, which is characteristic of mPRs. Progesterone treatment caused G protein activation and decreased production of cAMP in MDA-MB-468 cells, which is also characteristic of mPRs. The results indicate that the progestin receptor functions in these cell lines are mediated through mPRs and do not involve any N-terminally truncated PR isoforms.  相似文献   

3.
The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.  相似文献   

4.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

5.
The effects of norcantharidin (NCTD) on the growth of highly-metastatic human breast cancer cells were investigated by in vitro and ex vivo assays. Our results indicated that norcantharidin inhibited the in vitro growth of human breast cancer MDA-MB-231 cell line in dose- and time-dependent manners after the cancer cells were treated with norcantharidin at the concentrations of 6, 30 and 60 μmol/L for 24, 48 and 72 h. Moreover, the sera from the NCTD-treated rabbits after intravenous injection of NCTD at 15 and 30 min significantly suppressed the growth of the cancer cells ex vivo. The analyses by Hoechst 33258 staining and flow cytometry showed that the typical apoptotic morphological changes appeared and cell cycles arrested at G2/M phase in MDA-MB-231 cells after the cells were treated for 48 h with NCTD. In addition, NCTD down-regulated the expressions of anti-apoptotic protein Bcl-2 and up-regulated the expressions of pro-apoptotic protein Bax, eventually leading to the reduction of Bcl-2/Bax ratio in MDA-MB-231 cells. Furthermore, NCTD at concentrations of 6, 30 and 60 μmol/L dose-dependently reduced the phosphorylation of Akt and NF-κB expression in the breast cancer cell line. Induction of apoptosis and cell cycle arrest as well as reduction of Bcl-2/Bax ratio by NCTD may be the important mechanisms of action of NCTD suppressing the growth of MDA-MB-231 cells, which are associated with inhibition of the Akt and NF-κB signaling. Our findings suggest that norcantharidin may have a wide therapeutic and/or adjuvant therapeutic application in the treatment of human breast cancer.  相似文献   

6.
7.
旨在探究骨唾液酸蛋白(BSP)是否通过整合素αvβ3对整合素连接激酶(ILK)信号通路进行调控。BSP基因沉默乳腺癌MDA-MB-231细胞,流式细胞仪在细胞水平检测BSP不同水平的细胞株中整合素αvβ3的表达量。Western blotting检测磷酸化ILK水平的变化,MTT法检测细胞增殖能力。与对照组231BO-Scrambled细胞相比,BSP基因沉默组231BO-BSP27细胞中整合素αvβ3的表达水平明显下调(61.32±1.94)%(P<0.01)。整合素αvβ3鼠抗单克隆抗体(LM609)处理前的BSP基因沉默组231BO-BSP27细胞与21BO-Scrambled细胞相比,ILK磷酸化水平下调明显(39.38±1.38)%(P<0.01);LM609处理后的231BO-BSP27细胞与21BO-Scrambled细胞相比,ILK磷酸化水平下调明显(33.78±1.51)%(P<0.01)。向乳腺癌细胞231BO-scrambled和231BO-BSP27中添加LM609,MTT试验结果显示两株乳腺癌细胞的增殖能力均有降低(P<0.05)。BSP通过整合素αvβ3对乳腺癌MDA-MB-231细胞ILK信号通路进行调控,并影响细胞增殖。  相似文献   

8.
Interactions between the hormone melatonin at pharmacological concentrations (10(-3) M) and 2 Hz, 0.3 mT pulsed electromagnetic fields (PEMF) on the proliferation and invasion of human breast cancer cells were studied in vitro. Three types of human breast cancer cells were used in this study: MDA-MB-435, MDA-MB-231, and MCF-7. Results showed that cellular growth of MDA-MB-231 cells, which were reported to be lowly metastatic, and MCF-7 cells, which were reported to be nonmetastatic, were both significantly reduced by melatonin regardless of the presence of the field. Results also showed that MDA-MB-435 and MDA-MB-231 cells were invasive, with MDA-MB-231 cells being more invasive than the MDA-MB-435 cells for both unexposed and experimental-PEMF groups. In addition, invasion studies showed that MCF-7 cells were not invasive and that melatonin did not have any effects on the invasion of these cells, with or without the PEMF. It is also suggested that since metastasis requires growth and invasion into tissue, anti-invasion agents can be used in conjunction with melatonin to prevent formation of secondary metastases. The overall studies suggest that PEMF at 2 Hz, 0.3 mT does not influence cancer metastasis; while having clinical merit in the healing of soft tissue injury, this field has shown no influence on cancer cells as 60 Hz power line fields have.  相似文献   

9.
To produce rhamnetin using enzymatic engineering, poplar O-methyltransferase-7 and its mutants were prepared based on the rational enzyme design, and the production of rhamnetin was compared with the results obtained using the wild type enzyme. In addition, the potential of using rhamnetin as a cancer chemopreventive agent was compared with that of quercetin in MDA-MB-231 human breast cancer cells, and their bioavailabilities were tested in Dulbecco’s modified Eagle’s medium.  相似文献   

10.
Tumor metastasis is a complex and multistep process and its exact molecular mechanisms remain unclear. We attempted to find novel microRNAs (miRNAs) contributing to the migration and invasion of breast cancer cells. In this study, we found that the expression of miR-487a was higher in MDA-MB-231breast cancer cells with high metastasis ability than MCF-7 breast cancer cells with low metastasis ability and the treatment with transforming growth factor β1 (TGF-β1) significantly increased the expression of miR-487a in MCF-7 and MDA-MB-231 breast cancer cells. Subsequently, we found that the transfection of miR-487a inhibitor significantly decreased the expression of vimentin, a mesenchymal marker, while increased the expression of E-cadherin, an epithelial marker, in both MCF-7 cells and MDA-MB-231 cells. Also, the inactivation of miR-487a inhibited the migration and invasion of breast cancer cells. Furthermore, our findings demonstrated that miR-487a directly targeted the MAGI2 involved in the stability of PTEN. The down-regulation of miR-487a increased the expression of p-PTEN and PTEN, and reduced the expression of p-AKT in both cell lines. In addition, the results showed that NF-kappaB (p65) significantly increased the miR-487a promoter activity and expression, and TGF-β1 induced the increased miR-487a promoter activity via p65 in MCF-7 cells and MDA-MB-231 cells. Moreover, we further confirmed the expression of miR-487a was positively correlated with the lymph nodes metastasis and negatively correlated with the expression of MAGI2 in human breast cancer tissues. Overall, our results suggested that miR-487a could promote the TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2.  相似文献   

11.
12.
《Phytomedicine》2015,22(9):820-828
BackgroundBreast cancer is the leading cause of cancer-related death among women worldwide. For treating breast cancer, numerous natural products have been considered as chemotherapeutic drugs.Hypothesis/purposeThe present study aims to investigate the apoptotic effect of Saxifragifolin A (Saxi A) isolated from Androsace umbellata in two different human breast cancer cells which are ER-positive MCF-7 cells and ER-negative MDA-MB-231 cells, and examine the molecular basis for its anticancer actions.Study designThe inhibitory effects of Saxi A on cell survival were examined in MCF-7 cells and MDA-MB-231 cells in vitro.MethodsMTT assays, Annexin V/PI staining analysis, ROS production assay, Hoechst33342 staining and Western blot analysis were performed.ResultsOur results showed that MDA-MB-231 cells were more sensitive to Saxi A-induced apoptosis than MCF-7 cells. Saxi A induced apoptosis in MDA-MB-231 cells through ROS-mediated and caspase-dependent pathways, whereas treatment with Saxi A induced apoptosis in MCF-7 cells in a caspase-independent manner. In spite of Saxi A-induced activation of MAPKs in both breast cancer cell lines, only p38 MAPK and JNK mediated Saxi A-induced apoptosis. In addition, cell survival of shERα-transfected MCF-7 cells was decreased, while MDA-MB-231 cells that overexpress ERα remained viable.ConclusionSaxi A inhibits cell survival in MCF-7 cells and MDA-MB-231 cells through different regulatory pathway, and ERα status appears to be important for regulating Saxi A-induced apoptosis in breast cancer cells. Thus, Saxi A may have a potential therapeutic use for treating breast cancer.  相似文献   

13.
Migration of cancer cells leads to invasion of primary tumors to distant organs (i.e., metastasis). Growing number of studies have demonstrated the migration of various cancer cell types directed by applied direct current electric fields (dcEF), i.e., electrotaxis, and suggested its potential implications in metastasis. MDA-MB-231 cell, a human metastatic breast cancer cell line, has been shown to migrate toward the anode of dcEF. Further characterizations of MDA-MB-231 cell electrotaxis and investigation of its underlying signaling mechanisms will lead to a better understanding of electrically guided cancer cell migration and metastasis. Therefore, we quantitatively characterized MDA-MB-231 cell electrotaxis and a few associated signaling events. Using a microfluidic device that can create well-controlled dcEF, we showed the anode-directing migration of MDA-MB-231 cells. In addition, surface staining of epidermal growth factor receptor (EGFR) and confocal microscopy showed the dcEF-induced anodal EGFR polarization in MDA-MB-231 cells. Furthermore, we showed an increase of intracellular calcium ions in MDA-MB-231 cells upon dcEF stimulation. Altogether, our study provided quantitative measurements of electrotactic migration of MDA-MB-231 cells, and demonstrated the electric field-mediated EGFR and calcium signaling events, suggesting their involvement in breast cancer cell electrotaxis.  相似文献   

14.
Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.  相似文献   

15.
目的:研究5-脂氧合酶激活蛋白(FLAP)的表达抑制对乳腺癌细胞凋亡的诱导作用。方法:通过小干扰RNA(siRNA)抑制乳腺癌细胞MDA-MB-231中FLAP的表达,用流式细胞仪检测膜联蛋白(annexin)-V标记的早期凋亡细胞,用Western印迹检测细胞凋亡相关蛋白的水平。结果:转染了FLAP siRNA的乳腺癌细胞,24h后FLAP的表达被抑制,17%的细胞出现早期凋亡;48h时早期凋亡细胞增加到32.1%;72h时早期凋亡细胞下降到13.8%,而死亡或凋亡晚期细胞占到61.3%。在细胞凋亡过程中,Bcl-2水平下降,而细胞色素c、胱冬蛋白酶(caspase)-3的水平逐渐增高。结论:FLAP的表达抑制可以诱导乳腺癌细胞通过Bcl-2和胱冬蛋白酶-3途径发生凋亡。  相似文献   

16.

Background

Protein C inhibitor (PCI) is a plasma serine protease inhibitor (serpin) that regulates several serine proteases in coagulation including thrombin and activated protein C. However, the physiological role of PCI remains under investigation. The cysteine protease, cathepsin L, has a role in many physiological processes including cardiovascular diseases, blood vessel remodeling, and cancer.

Methods and results

We found that PCI inhibits cathepsin L with an inhibition rate (k2) of 3.0 × 105 M1 s1. Whereas, the PCI P1 mutant (R354A) inhibits cathepsin L at rates similar to wild-type PCI, mutating the P2 residue results in a slight decrease in the rate of inhibition. We then assessed the effect of PCI and cathepsin L on the migration of human breast cancer (MDA-MB-231) cells. Cathepsin L was expressed in both the cell lysates and conditioned media of MDA-MB-231 cells. Wound-induced and transwell migration of MDA-MB-231 cells was inhibited by exogenously administered wtPCI and PCI P1 but not PCI P14 mutant. In addition, migration of MDA-MB-231 cells expressing wtPCI was significantly decreased compared to non-expressing MDA-MB-231 cells or MDA-MB-231 cells expressing the PCI P14 mutant. Downregulation of cathepsin L by either a specific cathepsin L inhibitor or siRNA technology also resulted in a decrease in the migration of MDA-MB-231 cells.

Conclusions

Overall, our data show that PCI regulates tumor cell migration partly by inhibiting cathepsin L.

General significance

Consequently, inhibiting cathepsin L by serpins like PCI may be a new pathway of regulating hemostasis, cardiovascular and metastatic diseases.  相似文献   

17.
《Cellular signalling》2014,26(5):1040-1047
We demonstrate that pre-treatment of estrogen receptor negative MDA-MB-231 breast cancer cells containing ectopically expressed HA-tagged sphingosine 1-phosphate receptor-2 (S1P2) with the sphingosine kinase 1/2 inhibitor SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) or the sphingosine kinase 2 selective inhibitor (R)-FTY720 methyl ether (ROMe) or sphingosine kinase 2 siRNA induced the translocation of HA-tagged S1P2 and Y416 phosphorylated c-Src to the nucleus of these cells. This is associated with reduced growth of HA-tagged S1P2 over-expressing MDA-MB-231 cells. Treatment of HA-S1P2 over-expressing MDA-MB-231 cells with the sphingosine 1-phosphate receptor-4 (S1P4) antagonist CYM50367 or with S1P4 siRNA also promoted nuclear translocation of HA-tagged S1P2. These findings identify for the first time a signaling pathway in which sphingosine 1-phosphate formed by sphingosine kinase 2 binds to S1P4 to prevent nuclear translocation of S1P2 and thereby promote the growth of estrogen receptor negative breast cancer cells.  相似文献   

18.
旨在探究整合素αvβ3的单克隆抗体LM609在BSP不同表达水平的乳腺癌细胞中对AKT(蛋白激酶B)信号通路的影响。利用免疫细胞化学法检测BSP不同表达水平的乳腺癌细胞中整合素αvβ3的表达量。BSP基因沉默乳腺癌MDA-MB-231BO细胞,Western blotting在蛋白水平检测磷酸化AKT的表达,MTT试验和细胞划痕试验分别检测细胞增殖、迁移能力的变化。结果显示,与231BO-Scrambled细胞相比,231BO-BSP27细胞中BSP蛋白水平明显降低,抑制率达到(59.43±1.71)%;LM609分别处理两株细胞后,与对照组231BO-Scrambled细胞相比,BSP基因沉默组21BO-BSP27细胞中AKT磷酸化水平下调明显,为(33.78±1.51)%(P<0.01);231BO-BSP27细胞和对照组231BO-Scrambled中细胞的增殖和迁移能力均有不同程度的下降(P<0.05)。LM609能够抑制胞内整合素αvβ3功能的表达,进而对AKT信号通路进行调控,并影响细胞增殖和迁移的发生。  相似文献   

19.
Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA1–6). LPA receptor type 1 (LPA1) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA1 is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA1 is known to induce IL-6 and IL-8 secretion, as also do LPA2 and LPA3. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA1,2,3,6; MDA-MB-231: LPA1,2; MCF-7: LPA2,6). Among the set of genes upregulated by LPA only in LPA1-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA1–3 antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA1 (MDA-B02/LPA1) and downregulated for LPA1 (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA1 and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA1. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA1 activation state in patients receiving anti-LPA1 therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号