首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transition metal (iron or cobalt) is a mandatory part that constitutes the catalytic center of nitrile hydratase (NHase). The incorporation of the cobalt ion into cobalt-containing NHase (Co-NHase) was reported to depend on self-subunit swapping and the activator of the Co-NHase acts as a self-subunit swapping chaperone for subunit exchange. Here we discovered that the activator acting as a metallochaperone transferred the cobalt ion into subunit-fused Co-NHase. We successfully isolated two activators, P14K and NhlE, which were the activators of NHases from Pseudomonas putida NRRL-18668 and the activator of low-molecular-mass NHase from Rhodococcus rhodochrous J1, respectively. Cobalt content determination demonstrated that NhlE and P14K were two cobalt-containing proteins. Substitution of the amino acids involved in the C-terminus of the activators affected the activity of the two NHases, indicating that the potential cobalt-binding sites might be located at the flexible C-terminal region. The cobalt-free NHases could be activated by either of the two activators, and both the two activators activated their cognate NHase more efficiently than did the noncognate ones. This study provided insights into the maturation of subunit-fused NHases and confirmed the metallochaperone function of the self-subunit swapping chaperone.  相似文献   

2.
Nitrile hydratase (NHase) has attracted substantial attention for industrial applications to produce large-scale amides. Several NHases have been investigated for functional expression in Escherichia coli (E. coli). A Fe-type NHase was obtained from an acetamiprid-degrading bacterium, Pseudoxanthomonas sp. AAP-7 and functionally expressed in E. coli BL21 (DE3). No significant NHase activity was detected from the E. coli expressing either the NHase gene alone or NHase and P46K genes transcribed as one unit. Purified recombinant NHase, co-expressed with P46K on two separate plasmids, exhibited the maximal enzyme activity. Furthermore, a GST tag attached to the N-terminus of α subunit resulted in a slight increase in the solubility and stability of NHase compared with a His tag at the C-terminus of β subunit. When co-expressed with the chaperones GroEL-GroES, the yield of the soluble recombinant NHase was improved substantially, while a small decrease in NHase activity was observed. The putative activator P46K was strictly required for production of the recombinant NHase for full enzyme activity, although the chaperones GroEL-GroES appeared to assist NHase to fold properly. This study of the expression of a fully active Fe-type NHase would provide another example to enhance our understanding of NHase biosynthesis.  相似文献   

3.
Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase) family of enzymes. All of these NHases possess a gene organization of <β-subunit> <α-subunit> <activator protein>, which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of <α-subunit> <β-subunit> <activator protein>, was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K) of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K)2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K)2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K)2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a <β-subunit> <α-subunit> <P14K> order. Our findings expand the general features of self-subunit swapping maturation.  相似文献   

4.
Southern hybridization analysis using the genes encoding the α- and β-subunits of nitrile hydratase (NHase) from Rhodococcus sp. N-774 as probe suggested that two R. erythropolis strains, JCM6823 and JCM2892, among 31 strains mainly from Japan Culture of Microorganisms (JCM) have NHase genes. Restriction analysis of DNA fragments showing positive hybridization showed that each fragment carried a nucleotide sequence very similar to that of the NHase genes from Rhodococcus sp. N-774. Nucleotide sequence analysis of the DNA fragment cloned from R. erythropolis JCM6823 showed the presence of the genes encoding the α- and β-subunits of NHase, which show 94.7% and 96.2% identity in amino acid sequence to those of Rhodococcus sp. N-774, respectively, as well as a C-terminal portion of the amidase gene upstream from these genes. Despite the extremely high amino acid sequence similarity in both NHases and amidases from R. erythropolis JCM6823 and Rhodococcus sp. N-774, the NHases and amidases from R. erythropolis strains showed broader substrate specificity when compared to those from Rhodococcus sp. N-774. This suggests that a very limited number of amino acid residues are responsible for the difference in substrate specificity. Although the NHase of Rhodococcus sp. N-774 are constitutively produced, the NHases of both R. erythropolis strains were inducibly produced by addition of ε-caprolactam as an inducer.  相似文献   

5.
Kubiak K  Nowak W 《Biophysical journal》2008,94(10):3824-3838
Nitrile hydratase (NHase) is an enzyme used in the industrial biotechnological production of acrylamide. The active site, which contains nonheme iron or noncorrin cobalt, is buried in the protein core at the interface of two domains, α and β. Hydrogen bonds between βArg-56 and αCys-114 sulfenic acid (αCEA114) are important to maintain the enzymatic activity. The enzyme may be inactivated by endogenous nitric oxide (NO) and activated by absorption of photons of wavelength λ < 630 nm. To explain the photosensitivity and to propose structural determinants of catalytic activity, differences in the dynamics of light-active and dark-inactive forms of NHase were investigated using molecular dynamics (MD) modeling. To this end, a new set of force field parameters for nonstandard NHase active sites have been developed. The dynamics of the photodissociated NO ligand in the enzyme channel was analyzed using the locally enhanced sampling method, as implemented in the MOIL MD package. A series of 1 ns trajectories of NHases shows that the protonation state of the active site affects the dynamics of the catalytic water and NO ligand close to the metal center. MD simulations support the catalytic mechanism in which a water molecule bound to the metal ion directly attacks the nitrile carbon.  相似文献   

6.
Bacterial nitrile hydratase (NHases) are important industrial catalysts and waste water remediation tools. In a global computational screening of conventional and metagenomic sequence data for NHases, we detected the two usually separated NHase subunits fused in one protein of the choanoflagellate Monosiga brevicollis, a recently sequenced unicellular model organism from the closest sister group of Metazoa. This is the first time that an NHase is found in eukaryotes and the first time it is observed as a fusion protein. The presence of an intron, subunit fusion and expressed sequence tags covering parts of the gene exclude contamination and suggest a functional gene. Phylogenetic analyses and genomic context imply a probable ancient horizontal gene transfer (HGT) from proteobacteria. The newly discovered NHase might open biotechnological routes due to its unconventional structure, its new type of host and its apparent integration into eukaryotic protein networks.  相似文献   

7.
A molecular screening approach was developed in order to amplify the genomic region that codes for the α- and β-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066T, which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

8.
Nitrile hydratase (NHase) was discovered in our laboratory. This enzyme was purified and characterized from various microorganisms. NHases are roughly classified into two groups according to the metal involved: Fe-type and Co-type. NHases are expected to have great potential as catalysts in organic chemical processing because they can convert nitriles to the corresponding higher-value amides under mild conditions. We have used microbial enzymes for the production of useful compounds; NHase has been used for the industrial production (production capacity: 30,000 tons/year) of acrylamide from acrylonitrile. This is the first successful example of a biotransformation process for the manufacture of a commodity chemical. This review summarizes the history of NHase studied not only from a basic standpoint but also from an applied point of view.  相似文献   

9.
Nitrile hydratase (NHase, EC 4.2.1.84) is one of the key enzymes of nitrile metabolism in a large number of microbes that catalyses the hydration of nitriles to corresponding amides, and has been successfully adopted in chemical industry for production of acrylamide, nicotinamide and 5-cyanovaleramide. However, NHase is still under active consideration of enzymologists to expand its potential for synthesis of various amides. Most of the NHases have been reported for their limited substrates acceptability, low enantioselectivity and thermostability and therefore a considerable improvement is required for developing as robust biocatalyst for synthesis of a range of organic amides. Studies on biochemical properties, gene configuration, active-site chemical models and site-directed mutagenesis have given the insight into the structural and functional characteristics of NHase. Keeping in view, the present review critically describes the available information on natural sources (based on activity and phylogenetic analysis), biochemical properties, catalysis–structure relationship, molecular expression and potential applications of this enzyme.  相似文献   

10.
In recent years nitrile hydratases (NHases) have drawn increasing attention due to their critical roles in organic synthesis. In the present paper an extensive investigation on the stability and activity of NHase from Nocardia sp. 108, which has succeeded in industrial application in China, was conducted by bioconversion of acrylonitrile to acrylamide in a batch manner. A study of cultivation demonstrated that biosynthesis of NHase changed significantly with the time of the culture, and the optimal NHase biosynthesis phase was 45 h after inoculation with NHase activity of a biomass of 1209.8 U/g. A stability study indicated that both crude enzyme preparations exhibited a good stability when exposed to a pH 7.2 tris-HCl buffer at 4°C for 4 h. The text was submitted by the authors in English.  相似文献   

11.
The study of Carbohydrate-Active enZymes (CAZymes) associated with plant cell wall metabolism is important for elucidating the developmental mechanisms of plants and also for the utilization of plants as a biomass resource. The use of recombinant proteins is common in this context, but heterologous expression of plant proteins is particularly difficult, in part because the presence of many cysteine residues promotes denaturation, aggregation and/or protein misfolding. In this study, we evaluated two phenotypes of methylotrophic yeast Pichia pastoris as expression hosts for expansin from peach (Prunus persica (L.) Batsch, PpEXP1), which is one of the most challenging targets for heterologous expression. cDNAs encoding wild-type expansin (PpEXP1_WT) and a mutant in which all cysteine residues were replaced with serine (PpEXP1_CS) were each inserted into expression vectors, and the protein expression levels were compared. The total amount of secreted protein in PpEXP1_WT culture was approximately twice that of PpEXP1_CS. However, the amounts of recombinant expansin were 0.58 and 4.3 mg l−1, corresponding to 0.18% and 2.37% of total expressed protein, respectively. This 13-fold increase in production of the mutant in P. pastoris indicates that the replacement of cysteine residues stabilizes recombinant PpEXP1.  相似文献   

12.
[目的]将T4噬菌体WG01宿主决定区的gp37基因片段,与另一株T4噬菌体QL01的相应基因进行同源重组,从而获得嵌合噬菌体并进行宿主谱分析,为阐明T4噬菌体的宿主谱形成机制以及快速筛选针对特定病原菌的噬菌体奠定了基础。[方法]通过同源重组的方法将WG01 gp37上的8个基因片段分别替换给QL01,用沙门氏菌作为宿主菌筛选嵌合噬菌体,并对嵌合噬菌体进行宿主谱、最佳感染复数、一步生长曲线和遗传稳定性测定。[结果]本研究共获得了5株嵌合噬菌体(QWA、QWC、QWF、QWG、QWFG)。宿主谱试验结果表明,与噬菌体QL01相比,嵌合噬菌体对21株沙门宿主菌分别可以多裂解7、8、4、10和9株菌,即嵌合噬菌体都获得了相对较宽的宿主谱,其中QWG的沙门氏菌宿主菌拓宽最多。生物学特性试验结果表明,嵌合噬菌体QWG生物学特性稳定。嵌合噬菌体QWG经连续传代培养20代,测序分析第1代和第20代嵌合噬菌体尾丝蛋白基因在传代过程中的稳定性,测序结果表明,嵌合噬菌体改造部分的基因能稳定遗传。[结论]用基因改造的方法可以产生宿主谱拓宽且能稳定遗传的嵌合噬菌体,为快速筛选针对特定病原菌的噬菌体提供了可能。  相似文献   

13.
The hup gene fragment of cosmid pHU52 was integrated into the genome of chickpea-Rhizobium Rcd301 via site-specific homologous recombination. Two small fragments of genomic DNA of strain Rcd301 itself were provided to flank cloned hup genes to facilitate the integration. The hup insert DNA of cosmid pHU52 was Isolated as an Intact 30.2 kb fragment using EcoRI, and cloned on partially restricted cosmid clone pSPSm3, which carries a DNA fragment of strain Rcd301 imparting streptomycin resistance. One of the recombinant cosmid clones, pBSL 12 thus obtained was conjugally transferred to the strain Rcd301. The integration of hup gene fragment into the genomic DNA through site-specific homologous recombination, was ensured by introducing an incompatible plasmid, pPH1 JI. The integration was confirmed by Southern hybridization. The integrated hup genes were found to express ex plants in two such constructs BSL 12–1 and BSL 12–3.  相似文献   

14.
Nitrile hydratase (NHase) is an enzyme containing non-corrin Co3+ in the non-standard active site. NHases from Pseudonocardia thermophila JCM 3095 catalyse hydration of nitriles to corresponding amides. The efficiency of the enzyme is 100 times higher for aliphatic nitriles then aromatic ones. In order to understand better this selectivity dockings of a series of aliphatic and aromatic nitriles and related amides into a model protein based on an X-ray structure were performed. Substantial differences in binding modes were observed, showing better conformational freedom of aliphatic compounds. Distinct interactions with postranslationally modified cysteines present in the active site of the enzyme were observed. Modeling shows that water molecule activated by a metal ion may easily directly attack the docked acrylonitrile to transform this molecule into acryloamide. Thus docking studies provide support for one of the reaction mechanisms discussed in the literature. Figure Crystalographic structure of Pseudonocardia thermophila JCM 3095 nitrile hydratase (a) and the non-standard active site (b)  相似文献   

15.
In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD+ ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD+ ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3.  相似文献   

16.
《Gene》1999,226(1):35-40
A DNA fragment containing xcp (gsp) gene homologues, required for extracellular protein secretion by the general secretory pathway (GSP) in various Gram-negative bacteria, was cloned from Pseudomonas putida (Pp) strain WCS358 and sequenced. The results presented here and those previously reported (de Groot, A., Krijger, J.-J., Filloux, A., Tommassen, J., 1996. Characterization of type II protein secretion (xcp) genes in the plant growth-stimulating Pseudomonas putida, strain WCS358 Mol. Gen. Genet. 250, 491–504) complete the sequence of the xcp gene cluster of Pp. Unlike that of Pseudomonas aeruginosa (Pa), the xcp gene cluster of Pp contains a gspN homologue. More surprisingly, in contrast to all known gsp gene clusters, the xcpX (gspK) homologue is not found. In addition, genes flanking the xcp cluster of Pp are not related to those flanking the xcp genes of Pa. Overall, the xcp gene products of Pp are as much related to those of Pa as to gsp gene products of enterobacterial species, suggesting that the xcp clusters of Pp and Pa have evolved separately.  相似文献   

17.
In recent years, nitrile hydratases (NHases) have drawn increasing attentions due to their critical roles in organic synthesis. In present paper, extensive investigation on the stability and activity of the NHase from Nocardia sp. 108, which is succeed in the industrial application in China, were conducted by the bioconversion of acrylonitrile to acrylamide in a batch manner. Cultivation study demonstrated that biosynthesis of NHase changed significantly with culture time, and the optimal NHase biosynthesis phase was 45 h after inoculation with NHase activity of 1209.8 U/g of biomass. Stability study indicated that crude enzyme preparation both exhibit a good stability when exposed to the pH 7.2 tris-HCl buffer at 4 degrees C for 4 h.  相似文献   

18.
Two Saccharomyces cerevisiae wild-type strains were crossed, and 26 diploid clones were obtained from (1) mass mating; (2) individual buds in zygote lineages; (3) individual zygotes. The mitochondrial DNAs from these diploids were investigated in their recombination and segregation by analyzing their restriction fragment patterns.Recombinant mitochondrial genomes were present in 75% of the diploid clones. Such recombinant genomes had unit sizes different from, yet within ± 5% of, the parental ones and showed EcoRI and HindII + III fragment patterns of parental types, two strong indications that both the gene complement and the gene order were very largely preserved in the progeny.Fragment patterns produced by HpaII and HaeIII were characterized by (1) fragments originating from the DNAs of both parents; and (2) new fragments, namely fragments absent in either parent. The new fragments appear to arise from unequal crossing-over events occurring in the spacers of allelic parental genetic units and usually have preferential localizations in the genome.These results provide the first evidence for physical recombinations of mitochondrial DNA in crosses of wild-type yeast cells, indicate that recombination is very frequent in crosses, and shed some light on mitochondrial segregation. They also have interesting implications for recombination phenomena in interspersed systems of unique and repetitive nucleotide sequences.  相似文献   

19.
In meiosis, programmed DNA breaks repaired by homologous recombination (HR) can be processed into inter-homolog crossovers that promote the accurate segregation of chromosomes. In general, more programmed DNA double-strand breaks (DSBs) are formed than the number of inter-homolog crossovers, and the excess DSBs must be repaired to maintain genomic stability. Sister-chromatid (inter-sister) recombination is postulated to be important for the completion of meiotic DSB repair. However, this hypothesis is difficult to test because of limited experimental means to disrupt inter-sister and not inter-homolog HR in meiosis. We find that the conserved Structural Maintenance of Chromosomes (SMC) 5 and 6 proteins in Caenorhabditis elegans are required for the successful completion of meiotic homologous recombination repair, yet they appeared to be dispensable for accurate chromosome segregation in meiosis. Mutations in the smc-5 and smc-6 genes induced chromosome fragments and dismorphology. Chromosome fragments associated with HR defects have only been reported in mutants, which have disrupted inter-homolog crossover. Surprisingly, the smc-5 and smc-6 mutations did not disrupt the formation of chiasmata, the cytologically visible linkages between homologous chromosomes formed from meiotic inter-homolog crossovers. The mutant fragmentation defect appeared to be preferentially enhanced by the disruptions of inter-homolog recombination but not by the disruptions of inter-sister recombination. Based on these findings, we propose that the C. elegans SMC-5/6 proteins are required in meiosis for the processing of homolog-independent, presumably sister-chromatid-mediated, recombination repair. Together, these results demonstrate that the successful completion of homolog-independent recombination is crucial for germ cell genomic stability.  相似文献   

20.
A molecular screening approach was developed in order to amplify the genomic region that codes for the alpha- and beta-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066(T), which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号