首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperglycemia is the major cause of diabetic angiopathy. The aim of our study was to evaluate the impact of KB-R7943, an inhibitor of Na+/Ca2+ exchanger (NCX) on cell growth and function of human “diabetic” endothelial cells (EC). Intercellular adhesion molecule-1 (ICAM-1) expression and NCX activity were determined after EC were exposed to high glucose in the absence and presence of KB-R7943. Coincubation of EC with high glucose for 24 h resulted in a significant increase of monocyte-endothelial cell adhesion and the expression of ICAM-1. These effects were abolished by KB-R7943 and KB-R7943 significantly decreased the activation of NCX induced by high glucose. These findings suggested that KB-R7943 may play a role in inhibiting expression of adhesion molecules by inhibiting the reverse activation of NCX.  相似文献   

2.
KB-R7943, an inhibitor of a reversed Na+/Ca2+ exchanger, exhibits neuroprotection against glutamate excitotoxicity. Taking into consideration that prolonged exposure of neurons to glutamate induces delayed calcium deregulation (DCD) and irreversible decrease of mitochondrial membrane potential (Δψmit), we examined the effect of KB-R7943 on glutamate and kainate-induced [Ca2+]i and on Δψmit changes in rat cultured cerebellar granule neurons. 15 μmol/l KB-R7943 significantly delayed the onset of DCD in response to kainate but not in response to glutamate. In spite of [Ca2+]i overload, KB-R7943 considerably improved the [Ca2+]i recovery and restoration of Δψmit after glutamate and kainate washout and increased cell viability after glutamate exposure. In resting neurons, KB-R7943 induced a statistically significant decrease in Δψmit. KB-R7943 also depolarized isolated brain mitochondria and slightly inhibited mitochondrial Ca2+ uptake. These findings suggest that mild mitochondrial depolarization and diminution of Ca2+ accumulation in the organelles might contribute to neuroprotective effect of KB-R7943.  相似文献   

3.
The effects of the Na+-Ca2+ exchange inhibitor 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943) on depolarization-induced Ca2+ signal and [3H]noradrenaline release were examined in SH-SY5Y cells. KB-R7943 at 10 M significantly inhibited high K+-induced increase in intracellular Ca2+ concentration. KB-R7943 also inhibited high K+-evoked release of [3H]noradrenaline from the cells. These findings suggest that the Na+-Ca2+ exchanger in the reverse mode is involved at least partly in depolarization-induced transmitter release.  相似文献   

4.
The sodium–calcium exchanger (NCX) plays a major role in the regulation of cytosolic Ca2+ in muscle cells. In this work, we performed force experiments to explore the role of NCX during contraction and relaxation of Cch-stimulated guinea pig tracheal smooth muscle strips. This tissue showed low sensitivity to NCX inhibitor KB-R7943 (IC50, 57 ± 2 μM), although a complete relaxation was obtained by NCX inhibition at 100 μM. Interestingly, relaxation after washing the agonist was prolonged in the absence of external Na+, whereas washing without Na+ and in the presence of KB-R7943 resembled control conditions with physiological solution. Altogether, this suggests the reversal of NCX to a Ca2+ influx mode by the manipulation on the Na+ gradient, which can be inhibited by KB-R7943. In order to understand the low sensitivity to KB-R7943, we studied the molecular aspects of the NCX expressed in this tissue and found that the isoform of NCX expressed is 1.3, similar to that described in human tracheal smooth muscle. Sequencing revealed that amino acid 19 in exon B is phenylalanine, whereas in its human counterpart is leucine, and that the first amino acid after exon D is aspartate instead of glutamate in humans. Results herein presented are discussed in term of their possible functional implications in the exchanger activity and thus in airway physiology.  相似文献   

5.
We investigated the effect of KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger, on the force of isometric contractions, the contractile force–frequency relationship and post-rest potentiation (a qualitative parameter of Ca2+ levels in sarcoplasmic reticulum) in the right ventricle papillary muscles isolated from ground squirrel hearts during summer (June, n = 4) and autumn (October, n = 4) activities. In the presence of 1.8 mM Ca2+at 36°C, 1–1.5 hours-long treatment of the summer papillary muscles with KB-R7943 produced no significant effects on the contractile indices at the majority of stimulation frequencies. In the autumn papillary muscles KB-R7943 induced a 40–50% decrease in the force of contraction (negative inotropic effect) at low stimulation frequencies (0.1–0.3 Hz) without any significant effect at higher stimulation frequencies (0.4–3.0 Hz). Furthermore, in this group, KB-R7943 suppressed the post-rest potentiation of contractility by 50 ± 21% at pause durations exceeding 120 s. These observations indicate that KB-R7943 can affect Ca2+ levels in sarcoplasmic reticulum and that Na+/Ca2+ exchange may contribute to the physiological remodeling of intracellular Ca2+ homeostasis in myocardium of hibernating animals prior their transition to a hypometabolic torpid state.  相似文献   

6.
7.
Expression of transient receptor potential canonical channels (TRPC) and the effects of transforming growth factor-β1 (TGF-β1) on Ca2+ signals and fibroblast proliferation were investigated in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, western blot, immunocytochemical analysis, and intracellular Ca2+ concentration [Ca2+]i measurement were applied. Cell proliferation and cell cycle progression were assessed using MTT assays and fluorescence activated cell sorting. Human cardiac fibroblasts have the expression of TRPC1,3,4,6 mRNA and proteins. 1-oleoyl-2-acetyl-sn-glycerol (OAG) and thapsigargin induced extracellular Ca2+-mediated [Ca2+]i rise. siRNA for knock down of TRPC6 reduced OAG-induced Ca2+ entry. Hyperforin as well as angiotensin II (Ang II) induced Ca2+ entry. KB-R7943, a reverse-mode Na+/Ca2+ exchanger (NCX) inhibitor, and/or replacement of Na+ with NMDG+ inhibited thapsigargin-, OAG- and Ang II-induced Ca2+ entry. Treatment with TGF-β1 increased thapsigargin-, OAG- and Ang II-induced Ca2+ entry with an enhancement of TRPC1,6 protein expression, suppressed by KB-R7943. TGF-β1 and AngII promoted cell cycle progression from G0/G1 to S/G2/M and cell proliferation. A decrease of the extracellular Ca2+ and KB-R7943 suppressed it. Human cardiac fibroblasts contain several TRPC-mediated Ca2+ influx pathways, which activate the reverse-mode NCX. TGF-β1 enhances the Ca2+ influx pathways requiring Ca2+ signals for its effect on fibroblast proliferation.  相似文献   

8.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

9.
The Ca2+ paradox represents a good model to study Ca2+ overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca2+ paradox-induced injury. This study aimed to elucidate their roles in this model. The Ca2+ paradox was elicited by perfusing isolated rat hearts with Ca2+-free KH media for 3 min or 5 min followed by 30 min of Ca2+ repletion. The LVDP was measured to reflect contractile function, and the LVEDP was measured to indicate contracture. TTC staining and the quantification of LDH release were used to define cell death. Calpain activity and troponin I release were measured after Ca2+ repletion. Ca2+ repletion of the once 3-min Ca2+ depleted hearts resulted in almost no viable tissues and the disappearance of contractile function. Compared to the effects of the calpain inhibitor MDL28170, KB-R7943, an inhibitor of the Na+/Ca2+ exchanger, reduced the LVEDP level to a greater extent, which was well correlated with improved contractile function recovery and tissue survival. The depletion of Ca2+ for 5 min had the same effects on injury as the 3-min Ca2+ depletion, except that the LVEDP in the 5-min Ca2+ depletion group was lower than the level in the 3-min Ca2+ depletion group. KB-R7943 failed to reduce the level of LVEDP, with no improvement in the LVDP recovery in the hearts subjected to the 5-min Ca2+ depletion treatment; however, KB-R7943 preserved its protective effects in surviving tissue. Both KB-R7943 and MDL28170 attenuated the Ca2+ repletion-induced increase in calpain activity in 3 min or 5 min Ca2+ depleted hearts. However, only KB-R7943 reduced the release of troponin I from the Ca2+ paradoxic heart. These results provide evidence suggesting that contracture is the main cause for contractile dysfunction, while activation of calpain mediates cell death in the Ca2+ paradox.  相似文献   

10.
Ca2+ plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca2+ is controlled primarily by the mitochondrial Ca2+ uniporter and the mitochondrial Na+/Ca2+ exchanger, influencing NADH production through Ca2+-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca2+-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca2+ release. Here we selectively measure Ca2+ influx rate through the mitochondrial Ca2+ uniporter and Ca2+ efflux rates through Na+-dependent and Na+-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na+/Ca2+ exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨm loss, Ca2+ release, NADH oxidation, swelling) of high extramitochondrial Ca2+ additions, allowing mitochondria to tolerate total mitochondrial Ca2+ loads of > 400 nmol/mg protein. For Ca2+ pulses up to 15 μM, Na+-independent Ca2+ efflux through the permeability transition pore accounted for ~ 5% of the total Ca2+ efflux rate compared to that mediated by the mitochondrial Na+/Ca2+ exchanger (in 5 mM Na+). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na+/Ca2+ exchanger-mediated Ca2+ efflux at higher concentrations (IC50 = 2 μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~ 40% at 10 μM cyclosporine A, while having no effect on the mitochondrial Ca2+ uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca2+ load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

11.
Reverse-mode activation of the Na+/Ca2+ exchanger (NCX) during reperfusion following ischemia contributes to Ca2+ overload and cardiomyocyte injury. KB-R7943, a selective reverse-mode NCX inhibitor, reduces lethal reperfusion injury under non-ischemic conditions. However, the effectiveness of this compound under ischemic conditions is unclear. In the present study, we studied the effects of KB-R7943 in an animal model of hyperlipidemia. We further assessed whether the K ATP + channels are involved in potential protective mechanisms of KB-R7943. Twelve rats were fed normal chow, while 48 animals were fed a high cholesterol diet. The hearts from the control and hypercholesterolemic rats were subjected to 25 min of global ischemia followed by a 120-min reperfusion. Before this, hearts from hypercholesterolemic rats either received no intervention (cholesterol control group) or were pre-treated with 1 μM KB-R7943 and 0.3 μM of K ATP + blocker glibenclamide or glibenclamide alone. The infarction sizes (triphenyltetrazolium assay) were 35 ± 5.0 % in the control group, 46 ± 8.7 % in the cholesterol control group (p < 0.05 vs. control group), 28.6 ± 3.3 % in the KB-R7943 group (p < 0.05 vs. cholesterol control group), 44 ± 5 % in the KB-R7943 and glibenclamide group, and 47 ± 8.5 % in the glibenclamide group (p < 0.05 vs. control group). Further, KB-R7943 attenuated the magnitude of cell apoptosis (p < 0.05 vs. cholesterol control group). These beneficial effects were abolished by glibenclamide. In conclusion, diet-induced hypercholesterolemia enhances myocardial injury. Selective reverse-mode NCX inhibitor KB-R7943 reduces the infarction size and apoptosis in hyperlipidemic animals through the activation of K ATP + channels.  相似文献   

12.

Background

Insect odorant receptors (ORs) function as odorant-gated ion channels consisting of a conventional, odorant-binding OR and the Orco coreceptor. While Orco can function as a homomeric ion channel, the role(s) of the conventional OR in heteromeric OR complexes has largely focused only on odorant recognition.

Results

To investigate other roles of odorant-binding ORs, we have employed patch clamp electrophysiology to investigate the properties of the channel pore of several OR complexes formed by a range of different odorant-specific Anopheles gambiae ORs (AgOrs) each paired with AgOrco. These studies reveal significant differences in cation permeability and ruthenium red susceptibility among different AgOr complexes.

Conclusions

With observable differences in channel function, the data support a model in which the odorant-binding OR also affects the channel pore. The variable effect contributed by the conventional OR on the conductive properties of odorant-gated sensory channels adds additional complexity to insect olfactory signaling, with differences in odor coding beginning with ORs on the periphery of the olfactory system.  相似文献   

13.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

14.
《Cell calcium》2014,55(4):191-199
Insect odorant receptors (ORs) are heteromeric complexes of an odor-specific receptor protein (OrX) and a ubiquitous co-receptor protein (Orco). The ORs operate as non-selective cation channels, also conducting Ca2+ ions. The Orco protein contains a conserved putative calmodulin (CaM)-binding motif indicating a role of CaM in its function. Using Ca2+ imaging to monitor OR activity we investigated the effect of CaM inhibition on the function of OR proteins. Ca2+ responses elicited in Drosophila olfactory sensory neurons by stimulation with the synthetic OR agonist VUAA1 were reduced and prolonged by CaM inhibition with the potent antagonist W7 but not with the weak antagonist W5. A similar effect was observed for Orco proteins heterologously expressed in CHO cells when CaM was inhibited with W7, trifluoperazine or chlorpromazine, or upon overexpression of CaM-EF-hand mutants. With the Orco CaM mutant bearing a point mutation in the putative CaM site (K339N) the Ca2+ responses were akin to those obtained for wild type Orco in the presence of W7. There was no uniform effect of W7 on Ca2+ responses in CHO cells expressing complete ORs (Or22a/Orco, Or47a/Orco, Or33a/Orco, Or56a/Orco). For Or33a and Or47a we observed no significant effect of W7, while it caused a reduced response in cells expressing Or22a and a shortened response for Or56a.  相似文献   

15.
AimsWe sought to determine the mechanisms of an increase in Ca2+ level in caveolae vesicles in pulmonary smooth muscle plasma membrane during Na+/K+-ATPase inhibition by ouabain.Main methodsThe caveolae vesicles isolated by density gradient centrifugation were characterized by electron microscopic and immunologic studies and determined ouabain induced increase in Na+ and Ca2+ levels in the vesicles with fluorescent probes, SBFI-AM and Fura2-AM, respectively.Key findingsWe identified the α2β1 and α1β1 isozymes of Na+/K+-ATPase in caveolae vesicles, and only the α1β1 isozyme in noncaveolae fraction of the plasma membrane. The α2-isoform contributes solely to the enzyme inhibition in the caveolae vesicles at 40 nM ouabain. Methylisobutylamiloride (Na+/H+-exchange inhibitor) and tetrodotoxin (voltage-gated Na+-channel inhibitor) pretreatment prevented ouabain induced increase in Na+ and Ca2+ levels. Ouabain induced increase in Ca2+ level was markedly, but not completely, inhibited by KB-R7943 (reverse-mode Na+/Ca2+-exchange inhibitor) and verapamil (L-type Ca2+-channel inhibitor). However, pretreatment with tetrodotoxin in conjunction with KB-R7943 and verapamil blunted ouabain induced increase in Ca2+ level in the caveolae vesicles, indicating that apart from Na+/Ca+-exchanger and L-type Ca2+-channels, “slip-mode conductance” of Na+ channels could also be involved in this scenario.SignificanceInhibition of α2 isoform of Na+/K+-ATPase by ouabain plays a crucial role in modulating the Ca2+ influx regulatory components in the caveolae microdomain for marked increase in (Ca2+)i in the smooth muscle, which could be important for the manifestation of pulmonary hypertension.  相似文献   

16.
To study the protective effect of mitochondrial ATP-sensitive K+ channel (mitoKATP channel) opener, nicorandil, combined with Na+/Ca2+ exchange blocker KB-R7943 on myocardial ischemia–reperfusion injury in isolated rat hearts; the isolated rat heart was perfused by modified Langendorff device, after 15-min balanced perfusion, 45-min ischemia (about left and right coronary perfusion flow reduced to 5% of the original irrigation flow), and 2-h reperfusion were performed. Forty Wistar rats were randomly divided into four groups: control group, nicorandil group, KB-R7943 group, and the combination of nicorandil and KB-R7943 group. After 45-min ischemia and then 2-h reperfusion, the myocardial infarct size was 34.31% in control group, 26.35% in nicorandil group, 28.74% in KB-R7943 group, and 19.23% in combination of nicorandil and KB-R7943 group. SOD activity in coronary perfusion fluid was the highest in the combination of nicorandil and KB-R7943 group, and MDA content was the lowest. In the combination drug group compared with the control group, myocardial ultrastructural injury was significantly reduced. The combination of nicorandil and KB-R7943 significantly reduced myocardial infarct size, significantly reduced myocardial ultrastructural damage, could increase coronary perfusion fluid SOD activity, and reduced MDA levels.  相似文献   

17.
Summary Discrepancies about the role of L-type voltage-gated calcium channels (VGCC) in acetylcholine (ACh)-induced [Ca2+]i oscillations in tracheal smooth muscle cells (TSMCs) have been seen in recent reports. We demonstrate here that ACh-induced [Ca2+]i oscillations in TMCS were reversibly inhibited by three VGCC blockers, nicardipine, nifedipine and verapamil. Prolonged (several minutes) application of VGCC blockers, led to tachyphylaxis; that is, [Ca2+]i oscillations resumed, but at a lower frequency. Brief (15–30 s) removal of VGCC blockers re-sensitized [Ca2+]i oscillations to inhibition by the agents. Calcium oscillations tolerant to VGCC blockers were abolished by KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger (NCX). KB-R7943 alone also abolished ACh-induced [Ca2+]i oscillations. Enhancement of the reverse mode of NCX via removing extracellular Na+ reversed inhibition of ACh-induced [Ca2+]i oscillations by VGCC blockers. Inhibition of non-selective cation channels using Gd3+ slightly reduced the frequency of ACh-induced [Ca2+]i oscillations, but did not prevent the occurrence of tachyphylaxis. Altogether, these results suggest that VGCC and the reverse mode of NCX are two primary Ca2+ entry pathways for maintaining ACh-induced [Ca2+]i oscillations in TSMCs. The two pathways complement each other, and may account for tachyphylaxis of ACh-induced [Ca2+]i oscillations to VGCC blockers.  相似文献   

18.
(Na++K+)-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na+/Ca2+-exchanger (NCX) plays a critical role in increasing intracellular Ca2+ concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on 45Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced 45Ca influx, suggesting that the Ca2+ influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca2+ channel (LTCC) inhibitor, completely blocks the activation of NKA-induced 45Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca2+. In contrast, the inhibition of NKA by ouabain induces 4.7-fold 45Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced 45Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca2+ and that the NCX reverse-mode is the major source for the 45Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca2+ increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca2+ influx path ways in cardiomyocytes.  相似文献   

19.
Fluctuating extracellular Ca2+ regulates many aspects of neuronal (patho)physiology including cell metabolism and respiration. Using fluorescence-based intracellular oxygen sensing technique, we demonstrate that depletion of extracellular Ca2+ from 1.8 to ≤ 0.6 mM by chelation with EGTA induces a marked spike in O2 consumption in differentiated PC12 cells. This respiratory response is associated with the reduction in cytosolic and mitochondrial Ca2+, minor depolarization on the mitochondrial membrane, moderate depolarization of plasma membrane, and no changes in NAD(P)H and ATP. The response is linked to the influx of extracellular Na+ and the subsequent activation of mitochondrial Na+/Ca2+ and Na+/H+ exchange. The mitochondrial Na+/Ca2+ exchanger (mNCX) activated by Na+ influx reduces Ca2+ and increases Na+ levels in the mitochondrial matrix. The excess of Na+ activates the mitochondrial Na+/H+ exchanger (NHE) increasing the outward pumping of protons, electron transport and O2 consumption. Reduction in extracellular Na+ and inhibition of Na+ influx through the receptor operated calcium channels and plasmalemmal NHE reduce the respiratory response. Inhibition of the mNCX, L-type voltage gated Ca2+ channels or the release of Ca2+ from the endoplasmic reticulum also reduces the respiratory spike, indicating that unimpaired intercompartmental Ca2+ exchange is critical for response development.  相似文献   

20.
《Cell calcium》2008,43(6):606-617
We have previously demonstrated a role for the reorganization of the actin cytoskeleton in store-operated calcium entry (SOCE) in human platelets and interpreted this as evidence for a de novo conformational coupling step in SOCE activation involving the type II IP3 receptor and the platelet hTRPC1-containing store-operated channel (SOC). Here, we present evidence challenging this model. The actin polymerization inhibitors cytochalasin D or latrunculin A significantly reduced Ca2+ but not Mn2+ or Na+ entry into thapsigargin (TG)-treated platelets. Jasplakinolide, which induces actin polymerization, also inhibited Ca2+ but not Mn2+ or Na+ entry. However, an anti-hTRPC1 antibody inhibited TG-evoked entry of all three cations, indicating that they all permeate an hTRPC1-containing store-operated channel (SOC). These results indicate that the reorganization of the actin cytoskeleton is not involved in SOC activation. The inhibitors of the Na+/Ca2+ exchanger (NCX), KB-R7943 or SN-6, caused a dose-dependent inhibition of Ca2+ but not Mn2+ or Na+ entry into TG-treated platelets. The effects of the NCX inhibitors were not additive with those of actin polymerization inhibitors, suggesting a common point of action. These results indicate a role for two Ca2+ permeable pathways activated following Ca2+ store depletion in human platelets: A Ca2+-permeable, hTRPC1-containing SOC and reverse Na+/Ca2+ exchange, which is activated following Na+ entry through the SOC and requires a functional actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号