首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bacillus anthracis MoxXT is a Type II proteic Toxin–Antitoxin (TA) module wherein MoxT is a ribonuclease that cleaves RNA specifically while MoxX interacts with MoxT and inhibits its activity. Disruption of the TA interaction has been proposed as a novel antibacterial strategy. Peptides, either based on antitoxin sequence or rationally designed, have previously been reported to disrupt the MoxXT interaction but cause a decrease in MoxT ribonuclease activity. In the present study, we report the crystal structure of MoxT, and the effect of several peptides in disrupting the MoxXT interaction as well as augmentation of MoxT ribonuclease activity by binding to MoxT in vitro. Docking studies on the peptides were carried out in order to explain the observed structure activity relationships. The peptides with ribonuclease augmentation activity possess a distinct structure and are proposed to bind to a distinct site on MoxT. The docking of the active peptides with MoxT showed that they possess an aromatic group that occupies a conserved hydrophobic pocket. Additionally, the peptides inducing high ribonuclease activity were anchored by a negatively charged group near a cluster of positively charged residues present near the pocket. Our study provides a structural basis and rationale for the observed properties of the peptides and may aid the development of small molecules to disrupt the TA interaction.  相似文献   

2.
Replacement of a specific amino acid residue in a protein with nonnatural analogues is highly challenging because of their cellular toxicity. We demonstrate for the first time the replacement of all arginine (Arg) residues in a protein with canavanine (Can), a toxic Arg analogue. All Arg residues in the 5-base specific (UACAU) mRNA interferase from Bacillus subtilis (MazF-bs(arg)) were replaced with Can by using the single-protein production system in Escherichia coli. The resulting MazF-bs(can) gained a 6-base recognition sequence, UACAUA, for RNA cleavage instead of the 5-base sequence, UACAU, for MazF-bs(arg). Mass spectrometry analysis confirmed that all Arg residues were replaced with Can. The present system offers a novel approach to create new functional proteins by replacing a specific amino acid in a protein with its analogues.  相似文献   

3.
MazF is an mRNA interferase which cleaves mRNAs at a specific sequence. Here, we show that in contrast to MazF-ec from Escherichia coli, which specifically cleaves ACA sequences, MazF-bs from Bacillus subtilis is an mRNA interferase that specifically cleaves a five-base sequence, UACAU. MazF homologues widely prevailing in Gram-positive bacteria were found to be highly homologous to MazF-bs, suggesting that they may also have similar cleavage specificity. This cleavage site is over-represented in the B. subtilis genes associated with biosynthesis of secondary metabolites, suggesting that MazF-bs may be involved in the regulation of the production of secondary metabolites.  相似文献   

4.
A codon-optimized recombinant ribonuclease, MC1 is characterized for its uridine-specific cleavage ability to map nucleoside modifications in RNA. The published MC1 amino acid sequence, as noted in a previous study, was used as a template to construct a synthetic gene with a natural codon bias favoring expression in Escherichia coli. Following optimization of various expression conditions, the active recombinant ribonuclease was successfully purified as a C-terminal His-tag fusion protein from E. coli [Rosetta 2(DE3)] cells. The isolated protein was tested for its ribonuclease activity against oligoribonucleotides and commercially available E. coli tRNATyr I. Analysis of MC1 digestion products by ion-pairing reverse phase liquid-chromatography coupled with mass spectrometry (IP-RP-LC-MS) revealed enzymatic cleavage of RNA at the 5′-termini of uridine and pseudouridine, but cleavage was absent if the uridine was chemically modified or preceded by a nucleoside with a bulky modification. Furthermore, the utility of this enzyme to generate complementary digestion products to other common endonucleases, such as RNase T1, which enables the unambiguous mapping of modified residues in RNA is demonstrated.  相似文献   

5.
Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic.  相似文献   

6.
Dicer is a member of the ribonuclease III enzyme family and processes double‐stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non‐canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double‐stranded RNA‐binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA‐binding surface. The second dsRNA binding domain at C‐terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem‐loop structure of the RNA substrate, suggesting the possibility that stem‐loop RNA‐guided gene silencing pathway exists in budding yeast.  相似文献   

7.
J Andersen  N Delihas  J S Hanas  C W Wu 《Biochemistry》1984,23(24):5752-5759
The structure of Xenopus laevis oocyte (Xlo) 5S ribosomal RNA has been probed with single-strand-specific ribonucleases T1, T2, and A with double-strand-specific ribonuclease V1 from cobra venom. The digestion of 5'- or 3'-labeled renatured 5S RNA samples followed by gel purification of the digested samples allowed the determination of primary cleavage sites. Results of these ribonuclease digestions provide support for the generalized 5S RNA secondary structural model derived from comparative sequence analysis. However, three putative single-stranded regions of the molecule exhibited unexpected V1 cuts, found at C36, U73, U76, and U102. These V1 cuts reflect additional secondary structural features of the RNA including A.G base pairs and support the extended base pairing in the stem containing helices IV and V which was proposed by Stahl et al. [Stahl, D. A., Luehrsen, K. R., Woese, C. R., & Pace, N. R. (1981) Nucleic Acids Res. 9, 6129-6137]. A conserved structure for helix V having a common unpaired uracil residue at Xlo position 84 is proposed for all eukaryotic 5S RNAs. Our results are compared with nuclease probes of other 5S RNAs.  相似文献   

8.
Members of the ribonuclease III family are the primary agents of double-stranded (ds) RNA processing in prokaryotic and eukaryotic cells. Bacterial RNase III orthologs cleave their substrates in a highly site-specific manner, which is necessary for optimal RNA function or proper decay rates. The processing reactivities of Escherichia coli RNase III substrates are determined in part by the sequence content of two discrete double-helical elements, termed the distal box (db) and proximal box (pb). A minimal substrate of E.coli RNase III, μR1.1 RNA, was characterized and used to define the db and pb sequence requirements for reactivity and their involvement in cleavage site selection. The reactivities of μR1.1 RNA sequence variants were examined in assays of cleavage and binding in vitro. The ability of all examined substitutions in the db to inhibit cleavage by weakening RNase III binding indicates that the db is a positive determinant of RNase III recognition, with the canonical UA/UG sequence conferring optimal recognition. A similar analysis showed that the pb also functions as a positive recognition determinant. It also was shown that the ability of the GC or CG bp substitution at a specific position in the pb to inhibit RNase III binding is due to the purine 2-amino group, which acts as a minor groove recognition antideterminant. In contrast, a GC or CG bp at the pb position adjacent to the scissile bond can suppress cleavage without inhibiting binding, and thus act as a catalytic antideterminant. It is shown that a single pb+db ‘set’ is sufficient to specify a cleavage site, supporting the primary function of the two boxes as positive recognition determinants. The base pair sequence control of reactivity is discussed within the context of new structural information on a post-catalytic complex of a bacterial RNase III bound to the cleaved minimal substrate.  相似文献   

9.
Cleavage of the genome RNAs of poliovirus type 1, 2 and 3 with the ribonuclease III of Escherichia coli has been investigated with the following results: (1) at or above physiological salt concentration, the RNAs are completely resistant to the action of the enzyme, an observation suggesting that the RNAs lack “primary cleavage sites”; (2) lowering the salt concentration to 0.1 m or below allows RNase III to cleave the RNAs at “secondary sites”. Both large and small fragments can be obtained in a reproducible manner depending on salt conditions chosen for cleavage. Fingerprints of three large fragments of poliovirus type 2 RNA show that they originate from unique segments and represent most if not all sequences of the genome. Based upon binding to poly(U) filters of poly(A)- linked fragments, a physical map of the large fragments of poliovirus type 2 RNA was constructed. The data suggest that RNase III cleavage of single-stranded RNA provides a useful method to fragment the RNA for further studies.  相似文献   

10.
11.
Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.  相似文献   

12.
13.
Delta ribozyme has the ability to cleave in transan mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy.  相似文献   

14.
The structure of the RNA binding site of ribosomal proteins S8 and S15.   总被引:12,自引:0,他引:12  
Proteins S8 and S15 from the 30 S ribosomal subunit of Escherichia coli were bound to 16 S RNA and digested with ribonuclease A. A ribonucleoprotein complex was isolated which contained the two proteins and three noncontiguous RNA subfragments totaling 93 nucleotides, that could be unambiguously located in the 16 S RNA sequence. We present a secondary structural model for the RNA moiety of the binding site complex, in which the two smaller fragments are extensively base-paired, respectively, to the two halves of the large fragment, to form two disconnected duplexes. Each of the two duplexes is interrupted by a small internal loop. This model is supported by (i) minimum energy considerations, (ii) sites of cleavage by ribonuclease A, and (iii) modification by the single strand-specific reagent kethoxal. The effect of protein binding on the topography of the complex is reflected in the kethoxal reactivity of the RNA moiety. In the absence of the proteins, 5 guanines are modified; 4 of these, at positions 663, 732, 733, and 741, are strongly protected from kethoxal when protein S15 is bound.  相似文献   

15.
D L Black  B Chabot  J A Steitz 《Cell》1985,42(3):737-750
Two different experimental approaches have provided evidence that both U2 and U1 snRNPs function in pre-mRNA splicing. When the U2 snRNPs in a nuclear extract are selectively degraded using ribonuclease H and either of two deoxyoligonucleotides complementary to U2 RNA, splicing activity is abolished. Mixing an extract in which U2 has been degraded with one in which U1 has been degraded recovers activity. Use of anti-(U2)RNP autoantibodies demonstrates that U2 snRNPs associate with the precursor RNA during in vitro splicing. At 60 min, but not at 0 min, into the reaction intron fragments that include the branch-point sequence are immunoprecipitated by anti-(U2)RNP. At all times, U1 snRNPs bind the 5' splice site of the pre-mRNA. Possible interactions of the U2 snRNP with the U1 snRNP and with the pre-mRNA during splicing are considered.  相似文献   

16.
J W Harper  N J Logsdon 《Biochemistry》1991,30(32):8060-8066
Substantial evidence indicates that HIV-1 trans-activation by tat protein is mediated through the TAR RNA element. This RNA forms a stem-loop structure containing a three-nucleotide bulge and a six-nucleotide loop. Previous mutagenic analysis of TAR indicates that the bulge residues and a 4 bp segment of the stem constitute, in part, the tat binding site. However, there appears to be no sequence-specific contribution of the six-base loop. We have employed a ribonuclease protection technique to explore the interaction of tat with single-stranded regions of TAR. The results indicate that tat interacts with both the bulge and loop regions of TAR. Treatment of TAR RNA with RNase A results in cleavage at U23 and U31, located in the bulge and loop regions, respectively. High concentrations (approximately 2 microM) of Escherichia coli derived tat protein, prepared by standard procedures, gave complete protection of TAR RNA from RNase A cleavage. However, under these conditions, truncated TAR derivatives in which no stem-loop structure is expected to form were also protected, indicating nonspecific binding. In order to obtain a tat preparation with enhanced specificity toward TAR RNA, methods were developed for refolding the recombinant protein. This treatment enhanced the affinity of tat for TAR by approximately 30-fold [Kd(apparent) less than 25 nM] and markedly increased its specificity for the TAR. Again, tat protected TAR RNA from RNase A cleavage at both U23 and U31. Protection was also observed with RNase T1 which cleaves TAR RNA at three G residues in the six-base loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We show here that human U2 small nuclear RNA genes contain a 'strong nuclease S1 cleavage site' (SNS1 site), a sequence that is very sensitive to digestion by nuclease S1. This site is located 0.50-0.65 kb downstream of the U2 RNA coding region. It comprises a 0.15-kb region in which (dC-dT)n:(dA-dG)n co-polymeric stretches represent greater than 90% of the sequence. Nuclease S1 is able to excise unit length repeats of the human U2 RNA genes both from cloned fragments and total human genomic DNA. The precise locations of the cleavage sites are dependent on the superhelicity of the substrate DNA. In negatively supercoiled substrates, cleavages are distributed over the entire 0.15-kb region, but in linearized substrates, they occur within a more limited region, mainly at the boundary of the SNS1 site closest to the human U2 RNA coding region. Nuclease S1 cleavage of negatively supercoiled substrates occurs at pHs as high as 7.0; in contrast, cleavage of linearized substrates requires a pH less than 5.0, indicating that supercoiling contributes to the sensitivity of this site. Mung bean nuclease gives results similar to that observed with nuclease S1.  相似文献   

18.
A single-chained ribonuclease was isolated from the aqueous extract of sanchi ginseng (Panax pseudoginseng) flowers. It exhibited a molecular mass of 23 kDa, an N-terminal sequence with some similarity to other enzymes involved in RNA metabolism but different from known ribonucleases, and considerably higher activity toward poly U than poly C and only slight activity toward poly A and poly G. The purification protocol entailed ion exchange chromatography on diethylaminoethyl (DEAE)-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on carboxymethyl (CM)-cellulose, and gel filtration on Superdex 75. The ribonuclease was unadsorbed on DEAE-cellulose and adsorbed on Affi-gel blue gel and CM-cellulose. Maximal activity of the ribonuclease was attained at pH 7. On either side of this pH the enzyme activity underwent a drastic decline. The enzyme activity was at its highest at 50 degrees C and dropped to about 20% of the maximal activity when the temperature was decreased to 20 degrees C or elevated to 80 degrees C. The characteristics of sanchi ginseng flower ribonuclease were different from those of the ribonucleases previously purified from sanchi ginseng and Chinese ginseng roots including ribonuclease from Chinese ginseng flowers which are morphologically very similar to sanchi ginseng flowers.  相似文献   

19.
20.
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号