首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   

2.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   

3.
4.
The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors.  相似文献   

5.
Although antiviral drugs are available for the treatment of influenza infection, it is an urgent requirement to develop new antiviral drugs regarding the emergence of drug‐resistant viruses. The nucleoprotein (NP) is conserved among all influenza A viruses (IAVs) and has no cellular equivalent. Therefore, NP is an ideal target for the development of new IAV inhibitors. In this study, we identified a novel anti‐influenza compound, ZBMD‐1, from a library of 20,000 compounds using cell‐based influenza A infection assays. We found that ZBMD‐1 inhibited the replication of H1N1 and H3N2 influenza A virus strains in vitro, with an IC50 ranging from 0.41–1.14 μM. Furthermore, ZBMD‐1 inhibited the polymerase activity and specifically impaired the nuclear export of NP. Further investigation indicated that ZBMD‐1 binds to the nuclear export signal 3 (NES3) domain and the dimer interface of the NP pocket. ZBMD‐1 also protected mice that were challenged with lethal doses of A/PR/8/1934 (H1N1) virus, effectively relieving lung histopathology changes, as well as strongly inhibiting the expression of pro‐inflammatory cytokines/chemokines, without inducing toxicity effects in mice. These results suggest that ZBMD‐1 is a promising anti‐influenza compound which can be further investigated as a useful strategy against IAVs in the future.  相似文献   

6.
With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).  相似文献   

7.
Developing antiviral therapies for influenza A virus (IAV) infection is an ongoing process because of the rapid rate of antigenic mutation and the emergence of drug-resistant viruses. The ideal strategy is to develop drugs that target well-conserved, functionally restricted, and unique surface structures without affecting host cell function. We recently identified the antiviral compound, RK424, by screening a library of 50,000 compounds using cell-based infection assays. RK424 showed potent antiviral activity against many different subtypes of IAV in vitro and partially protected mice from a lethal dose of A/WSN/1933 (H1N1) virus in vivo. Here, we show that RK424 inhibits viral ribonucleoprotein complex (vRNP) activity, causing the viral nucleoprotein (NP) to accumulate in the cell nucleus. In silico docking analysis revealed that RK424 bound to a small pocket in the viral NP. This pocket was surrounded by three functionally important domains: the RNA binding groove, the NP dimer interface, and nuclear export signal (NES) 3, indicating that it may be involved in the RNA binding, oligomerization, and nuclear export functions of NP. The accuracy of this binding model was confirmed in a NP-RK424 binding assay incorporating photo-cross-linked RK424 affinity beads and in a plaque assay evaluating the structure-activity relationship of RK424. Surface plasmon resonance (SPR) and pull-down assays showed that RK424 inhibited both the NP-RNA and NP-NP interactions, whereas size exclusion chromatography showed that RK424 disrupted viral RNA-induced NP oligomerization. In addition, in vitro nuclear export assays confirmed that RK424 inhibited nuclear export of NP. The amino acid residues comprising the NP pocket play a crucial role in viral replication and are highly conserved in more than 7,000 NP sequences from avian, human, and swine influenza viruses. Furthermore, we found that the NP pocket has a surface structure different from that of the pocket in host molecules. Taken together, these results describe a promising new approach to developing influenza virus drugs that target a novel pocket structure within NP.  相似文献   

8.
The M2 ion channel proteins of influenza A and B viruses are essential to viral replication. The two ion channels share a common motif, HXXXW, that is responsible for proton selectivity and activation. The ion channel for the influenza A virus, but not influenza B virus, is inhibited by the antiviral drug amantadine and amantadine-resistant escape mutants form in treated influenza A patients. The studies reviewed suggest that an antiviral compound directed against the conserved motif would be more useful than amantadine in inhibiting viral replication.  相似文献   

9.
The emergence of drug resistant variants of the influenza virus has led to a need to identify novel and effective antiviral agents. As an alternative to synthetic drugs, the consolidation of empirical knowledge with ethnopharmacological evidence of medicinal plants offers a novel platform for the development of antiviral drugs. The aim of this study was to identify plant extracts with proven activity against the influenza virus. Extracts of fifty medicinal plants, originating from the tropical rainforests of Borneo used as herbal medicines by traditional healers to treat flu-like symptoms, were tested against the H1N1 and H3N1 subtypes of the virus. In the initial phase, in vitro micro-inhibition assays along with cytotoxicity screening were performed on MDCK cells. Most plant extracts were found to be minimally cytotoxic, indicating that the compounds linked to an ethnomedical framework were relatively innocuous, and eleven crude extracts exhibited viral inhibition against both the strains. All extracts inhibited the enzymatic activity of viral neuraminidase and four extracts were also shown to act through the hemagglutination inhibition (HI) pathway. Moreover, the samples that acted through both HI and neuraminidase inhibition (NI) evidenced more than 90% reduction in virus adsorption and penetration, thereby indicating potent action in the early stages of viral replication. Concurrent studies involving Receptor Destroying Enzyme treatments of HI extracts indicated the presence of sialic acid-like component(s) that could be responsible for hemagglutination inhibition. The manifestation of both modes of viral inhibition in a single extract suggests that there may be a synergistic effect implicating more than one active component. Overall, our results provide substantive support for the use of Borneo traditional plants as promising sources of novel anti-influenza drug candidates. Furthermore, the pathways involving inhibition of hemagglutination could be a solution to the global occurrence of viral strains resistant to neuraminidase drugs.  相似文献   

10.
There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.  相似文献   

11.
12.
13.
Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.  相似文献   

14.
15.
16.
As we are confronted with an increasing number of emerging and reemerging viral pathogens, the identification of novel pathogen-specific and broad-spectrum antivirals has become a major developmental objective. Targeting of host factors required for virus replication presents a tangible approach toward obtaining novel hits with a broadened indication range. However, the identification of developable host-directed antiviral candidates remains challenging. We describe a novel screening protocol that interrogates the myxovirus host-pathogen interactome for broad-spectrum drug candidates and simultaneously probes for conventional, pathogen-directed hits. With resource efficiency and pan-myxovirus activity as the central developmental parameters, we explored coscreening against two distinct, independently traceable myxoviruses in a single-well setting. Having identified a pair of unrelated pathogenic myxoviruses (influenza A virus and measles virus) with comparable replication kinetics, we observed unimpaired coreplication of both viruses, generated suitable firefly and Renilla luciferase reporter constructs, respectively, and validated the protocol for up to a 384-well plate format. Combined with an independent counterscreen using a recombinant respiratory syncytial virus luciferase reporter, implementation of the protocol identified candidates with a broadened antimyxovirus profile, in addition to pathogen-specific hits. Mechanistic characterization revealed a newly discovered broad-spectrum lead that does not block viral entry but stimulates effector pathways of the innate cellular antiviral response. In summary, we provide proof of concept for the efficient discovery of broad-spectrum myxovirus inhibitors in parallel to para- and orthomyxovirus-specific hit candidates in a single screening campaign. The newly identified compound provides a basis for the development of a novel broad-spectrum small-molecule antiviral class.  相似文献   

17.
Synthesis and antiviral activity of substituted quercetins   总被引:1,自引:0,他引:1  
Influenza viruses are important pathogens that cause respiratory infections in humans and animals. In addition to vaccination, antiviral drugs against influenza virus play a significant role in controlling viral infections by reducing disease progression and virus transmission. Plant derived polyphenols are associated with antioxidant activity, anti-carcinogenic, and cardio- and neuro-protective actions. Some polyphenols, such as resveratrol and epigallocatechin gallate (EGCG), showed significant anti-influenza activity in vitro and/or in vivo. Recently we showed that quercetin and isoquercetin (quercetin-3-β-d-glucoside), a glucoside form of quercetin, significantly reduced the replication of influenza viruses in vitro and in vivo (isoquercetin). The antiviral effects of isoquercetin were greater than that of quercetin with lower IC(50) values and higher in vitro therapeutic index. Thus, we investigated the synthesis and antiviral activities of various quercetin derivatives with substitution of C3, C3', and C5 hydroxyl functions with various phenolic ester, alkoxy, and aminoalkoxy moieties. Among newly synthesized compounds, quercetin-3-gallate which is structurally related to EGCG showed comparable antiviral activity against influenza virus (porcine H1N1 strain) to that of EGCG with improved in vitro therapeutic index.  相似文献   

18.
Peptide-mediated interference with influenza A virus polymerase   总被引:4,自引:0,他引:4       下载免费PDF全文
The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.  相似文献   

19.
Influenza viruses have developed resistance to the current classes of drugs, which means they could eventually become more virulent and cause more mortality and hospitalization. Our study aims to investigate the antiviral activity of Rhazya stricta Decne leaves extract in vitro and search for new promising drugs from R. stricta identified compounds in silico. The study was performed in vitro by utilizing Madin-Darby Canine Kidney cell line (MDCK) as a substrate for the influenza virus and estimating the inhibition performance of the plant leaves extract. Additionally, in silico screening was conducted to explore the antiviral activity of R. stricta phytochemicals. We investigated the cytotoxicity of R. stricta leaves extract and its antiviral activity against influenza virus (A/Puerto Rico/8/34 (H1N1)) using the MTT assay. The mode of action of the plant leaves extract during the viral life cycle was tested using time-of-addition assay. In silico analyses were performed, including molecular docking, drug-likeness analysis, and toxicity risk assessment, to state the leading compounds to be developed into an anti-influenza virus drug. The 50% cytotoxicity concentration of the leaves extract was CC50: 184.6 µg/mL, and the 50% inhibition concentration was CI50: 19.71 µg\mL. The time of addition assay revealed that R. stricta leaves extract exerted its activity in the late step of the influenza virus replication cycle. In comparison to Oseltamivir, the leading compounds showed better binding affinity and can be developed into oral drugs with low toxicity risk. Isolation and purification of the leading compounds and testing their antiviral activity in vitro and in vivo are required.  相似文献   

20.
Development of new and effective anti-influenza drugs is critical for the treatment of influenza virus infection. The polymerase basic 2 (PB2) subunit as a core subunit of influenza A virus RNA polymerase complex is considered to be an attractive drug target for anti-influenza drug discovery. Dihydromyricetin, as a natural flavonoid, has a wide range of biological activities, but its anti-influenza A virus activity is ambiguous. Here, we found dihydromyricetin could inhibit the replication of a variety of influenza A virus strains. Mechanism studies demonstrated that dihydromyricetin reduced viral polymerase activity via selective inhibition of viral PB2 subunit, and decreased relative amounts of viral mRNA and genomic RNA during influenza A virus infection. The binding affinity and molecular docking analyses revealed that dihydromyricetin interacted with the PB2 cap-binding pocket, functioned as a cap-binding competitor. Interestingly, dihydromyricetin also reduced cellular immune injury by inhibiting TLR3 signaling pathway. Additionally, combination treatment of dihydromyricetin with zanamivir exerted a synergistic anti-influenza effect. Altogether, our experiments reveal the antiviral and anti-inflammatory activities of dihydromyricetin in vitro against influenza virus infection, which provides a new insight into the development of novel anti-influenza drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号