首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, in which the release of reactive oxygen species by infiltrating immune cells contributes to demyelination. American ginseng ( Panax quinquefolius ) is a natural health product with numerous beneficial properties, including anti-inflammatory and anti-oxidant effects. The purpose of this study was to determine whether ginseng could influence the course of the disease experimental autoimmune encephalomyelitis (EAE), an animal model of MS. C57BL/6J mice were immunized with MOG((35-55)) peptide to induce EAE. After clinical disease appeared, mice received either oral doses of an aqueous extract of ginseng (150 mg/kg body mass), or the vehicle. Clinical symptoms were recorded, and spinal cord tissue samples were analyzed for pathological signs of disease. The aqueous extract of ginseng significantly decreased (i) clinical signs of EAE, (ii) levels of circulating TNF-α, and (iii) central nervous system immunoreactive iNOS and demyelination scores, without a change in other neuropathological measures. This study shows that an aqueous extract of ginseng may be able to attenuate certain signs of EAE, suggesting that it may be a useful adjuvant therapy for MS.  相似文献   

2.
In a previous study, we demonstrated that myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide could induce severe chronic experimental autoimmune encephalomyelitis (EAE) in HLA-DR2(+) transgenic mice lacking all mouse MHC class II genes. We used this model to evaluate clinical efficacy and mechanism of action of a novel recombinant TCR ligand (RTL) comprised of the alpha(1) and beta(1) domains of DR2 (DRB1*1501) covalently linked to the encephalitogenic MOG-35-55 peptide (VG312). We found that the MOG/DR2 VG312 RTL could induce long-term tolerance to MOG-35-55 peptide and reverse clinical and histological signs of EAE in a dose- and peptide-dependent manner. Some mice treated with lower doses of VG312 relapsed after cessation of daily treatment, but the mice could be successfully re-treated with a higher dose of VG312. Treatment with VG312 strongly reduced secretion of Th1 cytokines (TNF-alpha and IFN-gamma) produced in response to MOG-35-55 peptide, and to a lesser degree purified protein derivative and Con A, but had no inhibitory effect on serum Ab levels to MOG-35-55 peptide. Abs specific for both the peptide and MHC moieties of the RTLs were also present after treatment with EAE, but these Abs had only a minor enhancing effect on T cell activation in vitro. These data demonstrate the powerful tolerance-inducing therapeutic effects of VG312 on MOG peptide-induced EAE in transgenic DR2 mice and support the potential of this approach to inhibit myelin Ag-specific responses in multiple sclerosis patients.  相似文献   

3.
4.
Immunization of common marmosets (Callithrix jacchus) with a single dose of human myelin in CFA, without administration of Bordetella pertussis, induces a form of autoimmune encephalomyelitis (EAE) resembling in its clinical and pathological expression multiple sclerosis in humans. The EAE incidence in our outbred marmoset colony is 100%. This study was undertaken to assess the genetic and immunological basis of the high EAE susceptibility. To this end, we determined the separate contributions of immune reactions to myelin/oligodendrocyte glycoprotein (MOG) and myelin basic protein to the EAE induction. Essentially all pathological features of myelin-induced EAE were also found in animals immunized with MOG in CFA, whereas in animals immunized with myelin basic protein in CFA clinical and pathological signs of EAE were lacking. The epitope recognition by anti-MOG Abs and T cells were assessed. Evidence is provided that the initiation of EAE is based on T and B cell activation by the encephalitogenic phMOG14-36 peptide in the context of monomorphic Caja-DRB*W1201 molecules.  相似文献   

5.
6.
Self-reactive T cells escape deletion in the thymus and are found in the peripheral repertoire. Because bone-marrow-derived dendritic cells (BM-DC) are potent activators of antigen-specific T cells, these cells could theoretically activate self-reactive T cells leading to autoimmunity. We investigated whether BM-DC could induce the autoimmune disease experimental autoimmune encephalomyelitis (EAE). Our results show that transfer of BM-DC presenting a self-peptide from the myelin oligodendrocyte glycoprotein (MOG35-55) into naive mice induced EAE 7-14 days later. MOG35-55-specific T cells of the Th1 phenotype were present in the lymph nodes and spleens of mice that received live peptide-pulsed BM-DC. Heat-killed or formaldehyde-fixed BM-DC presenting MOG35-55 could induce neither clinical signs of EAE nor a measurable T-cell response in vitro. These data show that live BM-DC presenting a self-antigen can induce the organ-specific autoimmune disorder EAE in a non-transgenic system. Therefore, this new EAE model could be used as a more clinically relevant model for the human disease multiple sclerosis. These findings could also have implications for the use of DC immunotherapy in a clinical setting.  相似文献   

7.
Programmed death-1 (PD-1) is a negative costimulatory molecule, and blocking the interaction of PD-1 with its ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), enhances autoimmune disease in several animal models. We have studied the role of PD-1 ligands in disease susceptibility and chronic progression in experimental autoimmune encephalomyelitis (EAE). In BALB/c mice immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, PD-L1 but not PD-L2 blockade significantly increased EAE incidence. In B10.S mice immunized with myelin proteolipid protein (PLP) peptide 139-151, both PD-L1 and PD-L2 blockade markedly enhanced EAE severity. In prediabetic NOD mice immunized with PLP48-70, PD-L2 blockade worsened EAE but did not induce diabetes, whereas PD-L1 blockade precipitated diabetes but did not worsen EAE, suggesting different regulatory roles of these two ligands in EAE and diabetes. B6 mice immunized with MOG35-55 developed chronic persistent EAE, and PD-L2 blockade in the chronic phase exacerbated EAE, whereas PD-L1 blockade did not. In contrast, SJL/J mice immunized with PLP139-151 developed chronic relapsing-remitting EAE, and only PD-L1 blockade during remission precipitated EAE relapse. The strain-specific effects of PD-1 ligand blockade did not correlate with the expression of PD-L1 and PD-L2 on dendritic cells and macrophages in lymphoid tissue, or on inflammatory cells in the CNS. However, EAE enhancement is correlated with less prominent Th2 cytokine induction after specific PD-1 ligand blockade. In conclusion, PD-L1 and PD-L2 differentially regulate the susceptibility and chronic progression of EAE in a strain-specific manner.  相似文献   

8.
Multiple sclerosis is a chronic neuroinflammatory demyelinating disorder of the central nervous system with a strong neurodegenerative component. While the exact etiology of the disease is yet unclear, autoreactive T lymphocytes are thought to play a central role in its pathophysiology. MS therapy is only partially effective so far and research efforts continue to expand our knowledge on the pathophysiology of the disease and to develop novel treatment strategies. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for MS sharing many clinical and pathophysiological features. There is a broad diversity of EAE models which reflect different clinical, immunological and histological aspects of human MS. Actively-induced EAE in mice is the easiest inducible model with robust and replicable results. It is especially suited for investigating the effects of drugs or of particular genes by using transgenic mice challenged by autoimmune neuroinflammation. Therefore, mice are immunized with CNS homogenates or peptides of myelin proteins. Due to the low immunogenic potential of these peptides, strong adjuvants are used. EAE susceptibility and phenotype depends on the chosen antigen and rodent strain. C57BL/6 mice are the commonly used strain for transgenic mouse construction and respond among others to myelin oligodendrocyte glycoprotein (MOG). The immunogenic epitope MOG35-55 is suspended in complete Freund''s adjuvant (CFA) prior to immunization and pertussis toxin is applied on the day of immunization and two days later. Mice develop a "classic" self-limited monophasic EAE with ascending flaccid paralysis within 9-14 days after immunization. Mice are evaluated daily using a clinical scoring system for 25-50 days. Special considerations for care taking of animals with EAE as well as potential applications and limitations of this model are discussed.  相似文献   

9.
MHC variant peptides are analogues of immunogenic peptides involving alterations of the MHC-binding residues, thereby altering the affinity of the peptide for the MHC molecule. Recently, our laboratory demonstrated that immunization of WT B6 mice with 45D, a low-affinity MHC variant peptide of MOG(35-55), results in significantly attenuated experimental autoimmune encephalomyelitis (EAE), yet IFN-gamma production is comparable to myelin oligodendrocyte glycoprotein (MOG)(35-55)-immunized mice. In light of these findings, we asked whether IFN-gamma was required for the reduced encephalitogenicity of the weak ligand 45D in EAE. In this study, we report that immunization of mice deficient in IFN-gamma or its receptor with 45D exhibit significant EAE signs compared with 45D-immunized wild-type B6 mice. Moreover, 45D-immunized IFN-gamma(-/-) and IFN-gammaR(-/-) mice demonstrate MOG tetramer-positive CD4(+) T cells within the CNS and display substantial numbers of MOG-specific CD4(+) T cells in the periphery. In contrast, wild-type mice immunized with 45D exhibit reduced numbers of MOG-specific CD4(+) T cells in the periphery and lack MOG tetramer- positive CD4(+) T cells in the CNS. Importantly, the increased encephalitogenicity of 45D in mice lacking IFN-gamma or IFN-gammaR was not due to deviation toward an enhanced IL-17-secreting phenotype. These findings demonstrate that IFN-gamma significantly attenuates the encephalitogenicity of 45D and are the first to highlight the importance of IFN-gamma signaling in setting the threshold level of responsiveness of autoreactive CD4(+) T cells to weak ligands.  相似文献   

10.
IFN-γ-inducible lysosomal thiol reductase (GILT) is an enzyme located in the Lamp-2-positive compartments of APC. GILT(-/-) mice are phenotypically normal, but their T cells exhibit reduced proliferation to several exogenously administered Ags that include cysteine residues and disulfide bonds. We undertook the present studies to determine if GILT(-/-) mice would process exogenously administered myelin oligodendrocyte glycoprotein (MOG), which contains disulfide bonds, to generate experimental autoimmune encephalomyelitis (EAE) to the endogenous protein. One possibility was that MOG(35-55) peptide would induce EAE, but that MOG protein would not. GILT(-/-) mice were relatively resistant to MOG(35-55)-induced EAE but slightly more susceptible to rat MOG protein-induced EAE than wild-type (WT) mice. Even though MOG(35-55) was immunogenic in GILT(-/-) mice, GILT APCs could not generate MOG(35-55) from MOG protein in vitro, suggesting that the endogenous MOG protein was not processed to the MOG(35-55) peptide in vivo. Immunization of GILT(-/-) mice with rat MOG protein resulted in a switch in pathogenic mechanism from that seen in WT mice; the CNS infiltrate included large numbers of plasma cells; and GILT(-/-) T cells proliferated to peptides other than MOG(35-55). In contrast to WT rat MOG-immunized mice, rat MOG-immunized GILT(-/-) mice generated Abs that transferred EAE to MOG(35-55)-primed GILT(-/-) mice, and these Abs bound to oligodendrocytes. These studies, demonstrating the key role of a processing enzyme in autoimmunity, indicate that subtle phenotypic changes have profound influences on pathogenic mechanisms and are directly applicable to the outbred human population.  相似文献   

11.
Analogs of immunogenic peptides containing substitutions at TCR contact residues (altered peptide ligands (APLs)) have been used to manipulate Ag-specific T cell responses in models of autoimmunity, including experimental autoimmune encephalomyelitis. However, recent clinical trials with APL of a myelin basic protein epitope revealed limitations of this therapy. In this study, we demonstrate that individual myelin oligodendrocyte glycoprotein (MOG) 35-55-specific T cell clones responded differentially to a MOG 35-55 APL, raising questions about the ability of peptide analogs containing amino acid substitutions at TCR contact residues to control polyclonal populations of T cells. In contrast, we found that a variant peptide containing a substitution at an MHC anchor residue uniformly affected multiple MOG 35-55-specific clones and polyclonal lines. Stimulation of polyclonal MOG 35-55-specific T cells with an MHC variant peptide resulted in the induction of anergy, as defined by a dramatic reduction in proliferation and IL-2 production upon challenge with wild-type peptide. Furthermore, treatment of T cell lines with this peptide in vitro resulted in a significant reduction in their encephalitogenicity upon adoptive transfer. These results indicate that the use of MHC anchor-substituted peptides may be efficacious in the regulation of polyclonal T cell responses such as those found in EAE.  相似文献   

12.
13.
C57BL/6 mice immunized with the extracellular Ig-like domain of rat myelin oligodendrocyte glycoprotein (MOG) developed experimental autoimmune encephalomyelitis (EAE) resembling that induced by rodent MOG 35-55 in its B cell independence and predominantly mononuclear CNS infiltrate. In contrast, human MOG protein-induced EAE was B cell dependent with polymorphonuclear leukocytes. Human MOG differs from rat MOG at several residues, including a proline for serine substitution at position 42. Human MOG 35-55 was only weakly encephalitogenic, and a proline substitution in rat MOG at position 42 severely attenuated its encephalitogenicity. However, human MOG 35-55 was immunogenic, inducing proliferation and IFN-gamma and IL-13 to human, but not rodent MOG 35-55 [corrected]. The B cell dependence of EAE induced by human MOG protein was not due to a requirement for Ag presentation by B cells, because spleen cells from B cell-deficient mice processed and presented human and rat MOG proteins to T cells. The different pathogenic mechanisms of human and rat MOG proteins might result from different Abs induced by these proteins. However, rat and human MOG proteins induced Abs to mouse MOG that were equivalent in titer and IgG subclass. These data demonstrate that EAE can be induced in C57BL/6 mice by two mechanisms, depending on the nature of the immunogen: an encephalitogenic T cell response to rat MOG or rodent MOG 35-55, or an encephalitogenic B cell response to epitopes on human MOG protein that most likely cross-react with mouse determinants.  相似文献   

14.
Experimental autoimmune encephalomyelitis (EAE) has been studied for decades as an animal model for human multiple sclerosis (MS). Here we performed ultrastructural analysis of corticospinal tract (CST) and motor neuron pathology in myelin oligodendrocyte glycoprotein (MOG) peptide 35-55- and MP4-induced EAE of C57BL/6 mice. Both models were clinically characterized by ascending paralysis. Our data show that CST and motor neuron pathology differentially contributed to the disease. In both MOG peptide- and MP4-induced EAE pathological changes in the CST were evident. While the MP4 model also encompassed severe motor neuron degeneration in terms of rough endoplasmic reticulum alterations, the presence of intracytoplasmic vacuoles and nuclear dissolution, both models showed motor neuron atrophy. Features of axonal damage covered mitochondrial swelling, a decrease in nearest neighbor neurofilament distance (NNND) and an increase of the oligodendroglial cytoplasm inner tongue. The extent of CST and motor neuron pathology was reflective of the severity of clinical EAE in MOG peptide- and MP4-elicited EAE. Differential targeting of CNS gray and white matter are typical features of MS pathology. The MOG peptide and MP4 model may thus be valuable tools for downstream studies of the mechanisms underlying these morphological disease correlates.  相似文献   

15.
The role of glia maturation factor (GMF) in myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) was investigated using GMF-deficient (GMF-KO) mice. We demonstrate that GMF-KO mice were resistant to the MOG 35-55 peptide-induced EAE as compared to wild type (Wt) mice (two in eight versus 10 in 10). Next, we examined the effect of administration of recombinant human GMF (rGMF) on MOG 35-55 peptide-induced EAE in mice. Daily administration of rGMF, staring days 1-14, resulted in significant exacerbation of clinical symptoms. Following rGMF injections, both GMF-KO (six in eight) and Wt mice (eight in eight) developed severe EAE (maximal clinical score of 3.5-4.0) with high frequency. The histological examination revealed severe infiltration of inflammatory cells in the spinal cord of MOG-immunized Wt mice while the resistance to EAE in GMF-KO mice was characterized by the absence of inflammatory cells. Administration of rGMF in Wt mice and GMF-KO mice resulted in a significant increase in infiltrating cells in the spinal cord following MOG-immunizations. We also evaluated cytokines and chemokines production as parameters of severity of inflammation in the spinal cord of Wt versus GMF-KO mice with and without GMF-reconstitution following MOG-immunizations. Cytokines (TNF-α, IFN-γ, IL-1β, IL-6) and chemokines (CCL2, CCL3, CXCL10, GM-CSF) production were significantly greater in Wt mice than in GMF-KO mice following MOG-immunization. Furthermore, the reconstitution experiment with rGMF showed that the administration of rGMF in both, Wt mice and GMF-KO mice produced significant increase in the GMF-mediated cytokine/chemokine production.  相似文献   

16.
Our previous studies demonstrated that oligomeric recombinant TCR ligands (RTL) can treat clinical signs of experimental autoimmune encephalomyelitis (EAE) and induce long-term T cell tolerance against encephalitogenic peptides. In the current study, we produced a monomeric I-A(s)/PLP 139-151 peptide construct (RTL401) suitable for use in SJL/J mice that develop relapsing disease after injection of PLP 139-151 peptide in CFA. RTL401 given i.v. or s.c. but not empty RTL400 or free PLP 139-151 peptide prevented relapses and significantly reduced clinical severity of EAE induced by PLP 139-151 peptide in SJL/J or (C57BL/6 x SJL)F(1) mice, but did not inhibit EAE induced by PLP 178-191 or MBP 84-104 peptides in SJL/J mice, or MOG 35-55 peptide in (C57BL/6 x SJL/J)F(1) mice. RTL treatment of EAE caused stable or enhanced T cell proliferation and secretion of IL-10 in the periphery, but reduced secretion of inflammatory cytokines and chemokines. In CNS, there was a modest reduction of inflammatory cells, reduced expression of very late activation Ag-4, lymphocyte function-associated Ag-1, and inflammatory cytokines, chemokines, and chemokine receptors, but enhanced expression of Th2-related factors, IL-10, TGF-beta3, and CCR3. These results suggest that monomeric RTL therapy induces a cytokine switch that curbs the encephalitogenic potential of PLP 139-151-specific T cells without fully preventing their entry into CNS, wherein they reduce the severity of inflammation. This mechanism differs from that observed using oligomeric RTL therapy in other EAE models. These results strongly support the clinical application of this novel class of peptide/MHC class II constructs in patients with multiple sclerosis who have focused T cell responses to known encephalitogenic myelin peptides.  相似文献   

17.
Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is expressed on the surface of CD11c(+) dendritic cells (DCs) and macrophages. In this study, we show that mice that express a mutant form of SHPS-1 lacking most of the cytoplasmic region are resistant to experimental autoimmune encephalomyelitis (EAE) in response to immunization with a peptide derived from myelin oligodendrocyte glycoprotein (MOG (35-55)). The MOG (35-55)-induced proliferation of, and production of IFN-gamma, IL-2, and IL-17, by T cells from immunized SHPS-1 mutant mice were reduced compared with those apparent for wild-type cells. The abilities of splenic DCs from mutant mice to stimulate an allogenic MLR and to prime Ag-specific T cells were reduced. Both IL-12-stimulated and TLR-dependent cytokine production by DCs of mutant mice were also impaired. Finally, SHPS-1 mutant mice were resistant to induction of EAE by adoptive transfer of MOG (35-55)-specific T cells. These results show that SHPS-1 on DCs is essential for priming of naive T cells and the development of EAE. SHPS-1 is thus a potential therapeutic target in inflammatory disorders of the CNS and other autoimmune diseases.  相似文献   

18.
The role of pathologic auto‐antibodies against myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is a highly controversial matter. As the use of animal models may enable to unravel the molecular mechanisms of the human disorder, numerous studies on multiple sclerosis are carried out using experimental autoimmune encephalomyelitis (EAE). In particular, the most extensively used EAE model is obtained by immunizing C57BL/6 mice with the immunodominant peptide MOG(35–55). In this scenario, we analyzed the anti‐MOG antibody response in this model using the recombinant refolded extracellular domain of the protein, MOG(1–117). To assess the presence of a B‐cell intramolecular epitope spreading mechanism, we tested also five synthetic peptides mapping the 1–117 sequence of MOG, including MOG(35–55). For this purpose, we cloned, expressed in Escherichia coli and on‐column refolded MOG(1–117), and we applied an optimized microwave‐assisted solid‐phase synthetic strategy to obtain the designed peptide sequences. Subsequently, we set up a solid‐phase immunoenzymatic assay testing both naïve and EAE mice sera and using MOG protein and peptides as antigenic probes. The results obtained disclose an intense IgG antibody response against both the recombinant protein and the immunizing peptide, while no response was observed against the other synthetic fragments, thus excluding the presence of an intramolecular epitope spreading mechanism. Furthermore, as the properly refolded recombinant probe is able to bind antibodies with greater efficiency compared with MOG(35–55), we hypothesize the presence of both linear and conformational epitopes on MOG(35–55) sequence. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
It has become increasingly clear that only antibodies recognizing conformation-dependent epitopes of myelin oligodendrocyte glycoprotein (MOG) have a demyelinating potential in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Nevertheless, for the induction of EAE, most studies to date have used MOG peptides or bacterially expressed MOG, neither of which contain the tertiary structure of the native antigen. Non-refolded recombinant human MOG does not induce EAE in DA rats. Therefore, we refolded this protein in order to assess the influence of MOG conformation on its pathogenicity in DA rats. DA rats immunized with refolded human MOG developed severe acute EAE. As expected, rats immunized with the refolded protein had a higher amount of conformational MOG antibodies present in serum. But in addition, a striking effect of MOG refolding on the generation of T-cell responses was found. Indeed, T-cell responses against the encephalitogenic MOG 91-108 epitope were greatly enhanced after refolding. Therefore, we conclude that refolding of MOG increases its pathogenicity both by generating conformation-dependent MOG antibodies and by enhancing its processing or/and presentation on MHC molecules. These data are important in regard to investigations of the pathogenic potential of many (auto)antigens.  相似文献   

20.
Oligodendrocyte-specific protein (OSP) is a recently isolated and cloned, 207-aa, hydrophobic, four-transmembrane protein found in CNS myelin. It represents approximately 7% of total myelin protein. The OSP cDNA sequence has no significant homology with previously reported genes, but the predicted protein structure suggests that OSP is a CNS homologue of peripheral myelin protein-22. We previously reported the presence of anti-OSP Abs in the cerebrospinal fluid of relapsing-remitting multiple sclerosis (MS) patients, but not control patient groups. In this study, we tested the ability of a panel of 20-mer peptides with 10-aa overlaps, representing the sequence of murine OSP, to induce experimental autoimmune encephalomyelitis (EAE), an animal model for MS. SJL mice challenged with murine OSP peptides 52-71, 82-101, 102-121, 142-161, 182-201, and 192-207 exhibited clinical EAE. OSP:52-71 elicited severe relapsing-remitting EAE in some individuals. All other encephalitogenic peptides elicited, at most, a loss of tail tonicity from which the mice most often completely recovered. Mononuclear cell infiltrates and focal demyelination characteristic of EAE were evident. T cell proliferative responses were seen with all encephalitogenic peptides except 142-161 and 182-201. OSP peptides 72-91 and 132-151 did not cause clinical EAE, but did elicit robust proliferative responses. B10.PL and PL/J mice challenged with the same OSP peptide doses as SJL mice did not exhibit clinical EAE. These results in the SJL EAE model, together with the results from MS patient clinical samples, make OSP a promising candidate for autoantigenic involvement in MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号