首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu M  Sun YJ  Zhou QG  Chen L  Hu Y  Luo CX  Wu JY  Xu JS  Li LX  Zhu DY 《Journal of neurochemistry》2008,106(4):1900-1913
Several lines of evidence suggest involvement of NMDA receptors (NMDARs) in the regulation of neurogenesis in adults and the formation of spatial memory. Functional properties of NMDARs are strongly influenced by the type of NR2 subunits incorporated. In adult forebrain regions such as the hippocampus and cortex, only NR2A and NR2B subunits are available to form the receptor complex with NR1 subunit. NR2B is predominant NR2 subunit in any of rat or human neural stem cells (NSCs). Thus, we suppose that NR2B-containing NMDAR should be critical in regulating adult neurogenesis, and thereby playing a role in the formation of spatial memory. In the cultured NSCs derived from the embryonic brain of rats, NR2B subunit-specific NMDAR antagonist Ro25-6981 increased cell proliferation, whereas MK-801, non-selective open-channel blocker of NMDARs, inhibited cell proliferation. Blockade of NR2B-containing NMDAR stimulated neurogenesis in the adult hippocampus and facilitated the formation of spatial memory. The enhanced spatial memory dropped back to base level when the NR2B antagonist-induced neurogenesis was neutralized by 3'-azido-deoxythymidine, a telomerase inhibitor. In addition, blockade of NR2B inhibited neuronal nitric oxide synthase (nNOS) enzymatic activity. In null mutant mice lacking nNOS gene (nNOS−/−), the effects of NR2B antagonist on neurogenesis disappeared. Moreover, nitric oxide donor DETA/NONOate attenuated and nNOS inhibitor 7-nitroindazole enhanced the effect of Ro 25-6981 on NSCs proliferation. Our findings suggest that NR2B-containing NMDAR subtypes negatively regulate neurogenesis in the adult hippocampus by activating nNOS activity and thereby hinder the formation of spatial memory.  相似文献   

2.
The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons were reduced by approximately 30% with the application of polysialic acid or polysialylated NCAM but not by the sialic acid monomer, chondroitin sulfate, or non-polysialylated NCAM. Polysialic acid inhibited NMDA receptor currents elicited by 3 microm glutamate but not by 30 microm glutamate, suggesting that polysialic acid acts as a competitive antagonist, possibly at the glutamate binding site. The polysialic acid induced effects were mimicked and fully occluded by the NR2B subunit specific antagonist, ifenprodil. Recordings from single synaptosomal NMDA receptors reconstituted in lipid bilayers revealed that polysialic acid reduced open probability but not the conductance of NR2B-containing NMDA receptors in a polysialic acid and glutamate concentration-dependent manner. The activity of single NR2B-lacking synaptosomal NMDA receptors was not affected by polysialic acid. Application of polysialic acid to hippocampal cultures reduced excitotoxic cell death induced by low micromolar concentration of glutamate via activation of NR2B-containing NMDA receptors, whereas enzymatic removal of polysialic acid resulted in increased cell death that occluded glutamate-induced excitotoxicity. These observations indicate that the cell adhesion molecule-associated glycan polysialic acid is able to prevent excitotoxicity via inhibition of NR2B subunit-containing NMDA receptors.  相似文献   

3.
4.
Under standard conditions, cultured ventral spinal neurons cluster AMPA- but not NMDA-type glutamate receptors at excitatory synapses on their dendritic shafts in spite of abundant expression of the ubiquitous NMDA receptor subunit NR1. We demonstrate here that the NMDA receptor subunits NR2A and NR2B are not routinely expressed in cultured spinal neurons and that transfection with NR2A or NR2B reconstitutes the synaptic targeting of NMDA receptors and confers on exogenous application of the immediate early gene product Narp the ability to cluster both AMPA and NMDA receptors. The use of dominant-negative mutants of GluR2 further showed that the synaptic targeting of NMDA receptors is dependent on the presence of synaptic AMPA receptors and that synaptic AMPA and NMDA receptors are linked by Stargazin and a MAGUK protein. This system of AMPA receptor-dependent synaptic NMDA receptor localization was preserved in hippocampal interneurons but reversed in hippocampal pyramidal neurons.  相似文献   

5.
Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.  相似文献   

6.
Accumulating evidence indicates the involvement of N-methyl-d-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Ro 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.  相似文献   

7.
Human midbrain‐derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson’s disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole‐cell patch‐clamp recordings, l ‐glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration‐response plots of differentiated NPCs yielded an EC50 of 2.2 μM for glutamate and an EC50 of 36 μM for NMDA. Glutamate‐induced currents were markedly inhibited by memantine in contrast to 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) suggesting a higher density of functional NMDA than alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA)/kainate receptors. NMDA‐evoked currents and calcium signals were blocked by the NR2B‐subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage‐gated calcium channels by verapamil abolished AMPA‐induced calcium responses but only partially reduced NMDA‐evoked transients suggesting the expression of calcium‐impermeable, GluR2‐containing AMPA receptors. Quantitative real‐time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 μM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase‐immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.  相似文献   

8.
Geng ZH  Cheng YY  Ma XL  Li ST 《生理学报》2003,55(6):736-741
探讨皮质酮对原代培养大鼠海马神经元的损伤效应及锌的调节作用。用原位染色和RT-PCR方法,分别检测神经元的损伤情况及NMDA受体三种亚基(NRl、NR2A、NR2B)mRNA的表达。皮质酮(5μmol/L)作用2,4h可明显降低海马神经元的存活率,导致神经元凋亡,并随着作用时间的延长而加重;锌离子明显影响皮质酮对海马神经元的损伤效应:同时加入皮质酮和低、中浓度Zn^2 (10、100μmol/L),可明显降低神经元凋亡率,而加入高浓度Zn^2 (250μmol/L)则加重神经元损伤。皮质酮作用24h后,海马神经元NRl、NR2BmRNA的表达水平增高,而同时加入低、中浓度Zn^2 (10、100μmol/L)的海马神经元NRl、NR2BmRNA表达水平与对照组接近;NR2AmRNA表达无明显变化。这些结果表明,锌对皮质酮所致应激损伤的调节具有双向性;NMDA受体亚基水平的变化可能是其中重要环节之一。  相似文献   

9.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

10.
The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-d-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G1 phase of cell cycling and decreased the proportion in the S/G2 phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G1 phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.  相似文献   

11.
The mRNA expression of the major subunits of N-methyl-d-aspartate receptors (NR1, NR2A and NR2B) following ischemia–reperfusion was studied in structures with different vulnerabilities to ischemic insult in the rat brain. The study was performed using quantitative real-time PCR on samples from 3-month-old male Sprague–Dawley rats after global transient forebrain ischemia followed by 48 h of reperfusion. Expression of NMDA receptor subunits mRNAs decreased significantly in all structures studied in the injured animals as compared to the sham-operated ones. The hippocampal subfields (CA1, CA3 and dentate gyrus) as well as the caudate-putamen, both reported to be highly ischemic-vulnerable structures, showed outstandingly lower mRNA levels of NMDA receptor subunits than the cerebral cortex, which is considered a more ischemic-resistant structure. The ratios of the mRNA levels of the different subunits were analyzed as a measure of the NMDA receptor expression pattern for each structure studied. Hippocampal areas showed changes in NMDA receptor expression after the insult, with significant decreases in the NR2A with respect to the NR1 and NR2B subunits. Thus, the NR1:NR2A:NR2B (1:1:2) ratios observed in the sham-operated animals became (2:1:4) in insulted animals. This modified expression pattern was similar in CA1, CA3 and the dentate gyrus, in spite of the different vulnerabilities reported for these hippocampal areas. In contrast, no significant differences in the expression pattern were observed in the caudate-putamen or cerebral cortex on comparing the sham-operated animals with the ischemia-reperfused rats. Our results support the notion that the regulation of NMDA receptor gene expression is dependent on the brain structure rather than on the higher or lower vulnerability of the area studied.  相似文献   

12.
Using whole-cell patch-clamp recordings, this study investigated the effects of interleukin-2 (IL-2) on N-methyl-d-aspartate (NMDA) receptor-mediated currents (I(NMDA)) in rat cultured hippocampal neurons and human embryonic kidney (HEK) 293 cells expressing recombinant NMDA receptors. We found that IL-2 (0.01-1ng/ml) immediately and significantly decreased peak I(NMDA) in cultured neurons. Interestingly, the peak I(NMDA) induced in HEK 293 cells was also inhibited by IL-2. We also found that IL-2 differentially decreased the peak amplitudes of NR2A- and NR2B-containing NMDA receptor-mediated currents (I(NR2A) and I(NR2B)) by 54+/-5% and 30+/-4%, respectively. These results provide new evidence that IL-2 induces rapid inhibition of peak currents of NMDA receptor-mediated responses with possible NR1/NR2A and NR1/NR2B subtype-differentiation, and suggest that the inhibition is mediated by direct interaction between IL-2 and NMDA receptors.  相似文献   

13.
目的研究皮质酮对大鼠海马神经元的毒性作用及NMDA受体亚基表达的影响.方法以体外原代培养的大鼠海马神经元为研究对象,根据影响因素,即给予的不同浓度皮质酮和其它因素分为8个组:对照组、10-7mol/L皮质酮组(简称10-7组)、10-6mol/L皮质酮组(简称10-6组)、10-5mol/L皮质酮组(简称10-5组)、10-6 高糖组、10-5 高糖组、10-6mol/L MK801组和10-5mol/L MK801组,镜下观察不同浓度皮质酮作用下海马神经元形态学的变化,并采用MTT方法测量各组细胞存活率,利用免疫细胞化学结合图象分析对原代培养海马神经元NMDA受体亚基的表达进行观察.结果 10-6、10-5浓度的皮质酮对海马神经元影响较大,细胞存活率较对照组明显降低,但10-6 高糖组、 10-5mol/L 高糖组、10-6mol/L MK801及10-5mol/L MK801 4个组,分别与相同皮质酮浓度处理组比较,细胞存活率显著提高.10-6和10-5组海马神经元上NMDA受体亚基表达较对照组明显降低.10-7mol/L浓度的皮质酮对上述指标影响不大.结论过量的皮质酮对大鼠海马神经元具有损伤作用,NMDA受体参与了此过程,NMDA受体拮抗剂和高浓度葡萄糖可保护海马神经元.  相似文献   

14.
Abstract: The NMDA receptor/channel has been shown to be inhibited by ethanol in the clinically relevant range 25–100 m M . We studied heteromeric assemblies (NR1b/NR2) of the NMDA receptor, expressed in oocytes, to address three questions regarding this inhibition, and discovered the following: (1) The inhibition was nearly equivalent when ethanol was coapplied with the agonist, and when ethanol was introduced after steady-state current was established, suggesting that ethanol does not act by interfering with the activation process of the NMDA receptor. (2) The degree of inhibition was controlled by the NR2 subunit, with both NR2A and NR2B significantly more sensitive to ethanol than NR2C and NR2D. (3) Manipulation of the NMDA receptor with a number of agents that normally modulate it did not alter the degree of inhibition produced by ethanol. The presence of Mg2+ (3 and 12.5 µ M ), Zn2+ (1 and 10 µ M ), or the glycine antagonist 7-chlorokynurenic acid (1.25 or 5 µ M ), did not alter the ethanol sensitivity of heteromeric (NR1b/NR2A, NR1b/NR2B, NR1b/NR2C) NMDA receptors. Redox modulation of the NMDA receptor by dithiothreitol (2 m M ) or 5,5'-dithiobis(2-nitrobenzoic acid) (1 m M ) also did not alter the degree to which ethanol inhibits NMDA receptors. Taken together, these results indicate that the ethanol sensitivity of native NMDA receptors, which likely exist in heteromeric form, results from actions at a site different from those of known modulators of the receptor.  相似文献   

15.
The therapeutic mechanisms of lithium for treating bipolar mood disorder remain poorly understood. Recent studies demonstrate that lithium has neuroprotective actions against a variety of insults. Here, we studied neuroprotective effects of lithium against excitotoxicity in cultured cerebral cortical neurons. Glutamate-induced excitotoxicity in cortical neurons was exclusively mediated by NMDA receptors. Pre-treatment of cortical neurons with LiCl time-dependently suppressed excitotoxicity with maximal protection after 6 days of pre-treatment. Significant protection was observed at the therapeutic and subtherapeutic concentration of 0.2-1.6 mm LiCl with almost complete protection at 1 mM. Neuroprotection was also elicited by valproate, another major mood-stabilizer. The neuroprotective effects of lithium coincided with inhibition of NMDA receptor-mediated calcium influx. Lithium pre-treatment did not alter total protein levels of NR1, NR2A and NR2B subunits of NMDA receptors. However, it did markedly reduce the level of NR2B phosphorylation at Tyr1472 and this was temporally associated with its neuroprotective effect. Because NR2B tyrosine phosphorylation has been positively correlated with NMDA receptor-mediated synaptic activity and excitotoxicity, the suppression of NR2B phosphorylation by lithium is likely to result in the inactivation of NMDA receptors and contributes to neuroprotection against excitotoxicity. This action could also be relevant to its clinical efficacy for bipolar patients.  相似文献   

16.
The trisomy 16 (Ts16) mouse is an animal model for human trisomy 21 (Down's syndrome). The gene encoding the NR2A subunit of the NMDA receptor has been localized to mouse chromosome 16. In the present study, western blot analysis revealed a 2.5-fold increase of NR2A expression in cultured Ts16 embryonic hippocampal neurons. However, this increase did not affect the properties of NMDA-evoked currents in response to various modulators. The sensitivity of NMDA receptors to transient applications of NMDA, spermine, and Zn(2+) was investigated in murine Ts16 and control diploid cultured embryonic hippocampal neurons. Peak and steady-state currents evoked by NMDA were potentiated by spermine at concentrations < 1 mM, and inhibited by Zn(2+) in a dose-dependent and voltage-independent manner. No marked difference was observed between Ts16 and control diploid neurons for any of these modulators with regard to IC(50) and EC(50) values or voltage dependency. Additionally, inhibition by the NR2B selective inhibitor, ifenprodil, was similar. These results demonstrate that NMDA-evoked currents are not altered in cultured embryonic Ts16 neurons and suggest that Ts16 neurons contain similar functional properties of NMDA receptors as diploid control neurons despite an increased level of NR2A expression.  相似文献   

17.
NMDA receptors play critical roles in synaptic modulation and neurological disorders. In this study, we investigated the developmental changes in NR2 cleavage by NMDA receptor-activated calpain in cultured cortical and hippocampal neurons. Calpain activity increased with development, associated with increased expression of NMDA receptors but not of calpain I. The activation of calpain in immature and mature cortical cultures was inhibited by antagonists of NR1/2B and NR1/2A/2B receptors, whereas the inhibition of NR1/2B receptors did not alter calpain activation in mature hippocampal cultures. The degradation of NR2 subunits by calpain differed with developmental age. NR2A was not a substrate of calpain in mature hippocampal cultures, but was cleaved in immature cortical and hippocampal cultures. NR2B degradation by calpain in cortical cultures decreased with development, but the level of degradation of NR2B in hippocampal cultures did not change. The kinetics of NMDA receptor-gated whole cell currents were also modulated by calpain activation in a manner that varied with developmental stage in vitro. In early (but not later) developmental stages, calpain activation altered the NMDA-evoked current rise time and time constants for both desensitization and deactivation. Our data suggest that the susceptibility of the NMDA receptor to cleavage by calpain varies with neuronal maturity in a manner that may alter its electrophysiological properties.  相似文献   

18.
19.
NMDA receptors are ionotropic glutamate receptors assembled of subunits of the NR1 and of the NR2 family (NR2A–NR2D). The subunit diversity largely affects the pharmacological properties of NMDA receptors and, hence, gives rise to receptor heterogeneity. As an overall result of studies on recombinant and native NMDA receptors, ethanol inhibits the function of receptors containing the subunits NR2A and/or NR2B to a greater extent than those containing NR2C or NR2D. For example, in rat cultured mesencephalic neurons, NR2C expression was developmentally increased, whereas expression of NR2A and NR2B was decreased. These changes coincided with a developmental loss of sensitivity of NMDA responses to ethanol and ifenprodil, a non-competitive NMDA receptor antagonist that shows selectivity for NR2B-containing receptors. Also in rat locus coeruleus neurons, the low ethanol sensitivity of somatic NMDA receptors could be explained by a prominent expression of NR2C. The inhibitory site of action for ethanol on the NMDA receptor is not yet known. Patch–clamp studies suggest a target site exposed to or only accessible from the extracellular environment. Apparently, amino acid residue Phe639, located in the TM3 domain of NR1, plays a crucial role in the inhibition of NMDA receptor function by ethanol. Since this phenylalanine site is common to all NMDA and non-NMDA receptor (AMPA/kainate receptor) subunits, this observation is consistent with accumulating evidence for a similar ethanol sensitivity of a variety of NMDA and non-NMDA receptors, but it cannot explain the differences in ethanol sensitivity observed with different NR2 subunits.  相似文献   

20.
NMDA receptors play a critical role in various aspects of CNS function. Hence, it is important to identify mechanisms that regulate NMDA receptor activity. We have shown previously that insulin rapidly potentiates NMDA receptor activity in both native and recombinant expression systems. Here we report that insulin causes a transient phosphorylation of NR2A and NR2B NMDA receptor subunits on tyrosine residues. Rat hippocampal slices were exposed to 1 microM insulin for 20 and 60 min and then solubilized. NR2A and NR2B subunits were immunoprecipitated and probed for tyrosine phosphorylation. Insulin incubation of hippocampal slices for 20 min elicited an increase in tyrosine phosphorylation to 176 +/- 16% (NR2A) and 203 +/- 15% (NR2B) of control levels. In contrast, 60 min of insulin incubation did not alter NR2 tyrosine phosphorylation levels (NR2A: 85 +/- 13% of control; NR2B: 93 +/- 10% of control). Although the consequence of insulin-stimulated tyrosine phosphorylation is unknown, it is possible that this site(s) is responsible for insulin potentiation of NMDA receptor activity. This possibility is consistent with our earlier finding that insulin potentiates hippocampal NMDA receptor activity after 20 min, but not after 60 min, of insulin exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号